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1 Introduction to Computational Fluid Dynamics (CFD)

and Computational Aeroacoustics (CAA)

1.1 Fluid Dynamics

Fluid Dynamics is a branch of classical physics. It studies the fluid-flow phenomena,
nature and the conservation laws of classical physics.
Some related topics:

• Jets

• Turbulence

• Rotating Flows

• Shear and Boundary Layers

• Aeroacoustics

• Bluff Body Flows

1.2 Acoustics

Acoustics is the science of sound. It studies the sound generation, transmissions and
effects.
Some related technical fields:

• Acoustical Oceanography

• Animal Bio acoustics

• Architectural Acoustics

• Biomedical Acoustics

• Engineering Acoustics

• Musical Acoustics

• Noise

• Physical Acoustics

• Psychological and Physiological Acoustics

• Signal Processing in Acoustics

• Speech Communication

• Structural Acoustics and Vibration

• Underwater Acoustics
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1.3 Approaches

• Theoretical

• Experimental (EFD – Experimental Fluid Dynamics)

• Computational (CFD – Computational Fluid Dynamics)

1.4 Experimental vs. Computational Fluid Dynamics

Objective: To achieve a quantitative description of the fluid flow phenomena.

EFD CFD

• Experimental facilities including
all the necessary measurement
techniques

• Slow and Expensive

• Sequential

• Limited number of points in space
and time

• Expensive to change geometric
parameters

• Measurement errors

• Computers, mathematical mod-
els, numerical methods and soft-
ware

• Faster and Cheaper

• Parallel

• Higher resolution in space and
time

• Easy to change geometric param-
eters

• Numerical errors: modeling, nu-
merical method and implementa-
tion

1.5 Definition of CFD

CFD is a branch of applied mathematics and it is the art of replacing the differential
equation governing the Fluid Flow with a set of algebraic equations (the process is called
discretization), which in turn can be solved with the aid of a digital computer to get an
approximate solution. The well known discretization methods used in CFD are Finite Dif-
ference Method (FDM), Finite Volume Method (FVM), Finite Element Method (FEM)
and Boundary Element Method (BEM).

FDM is the oldest (Euler) method in CFD applications. Here the domain including the
boundary of the physical problem is covered by a grid or mesh. At each of the interior
grid points the original differential equations are replaced by equivalent finite difference
approximations. In making this replacement, we introduce an error that is proportional
to the size of the grid. An accurate solution within a specified tolerance can be achieved
by decreasing the error through decreasing the grid size.

FVM is a numerical method for solving partial differential equations that calculates the
values of the conserved variables averaged across a fixed region in space referred as a
control volume. One advantage of the finite volume method over finite difference methods
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is that it does not require a structured mesh (although a structured mesh can also be
used). Furthermore, the finite volume method is preferable to other methods as a result
of the fact that boundary conditions can be applied non invasively. This is true because
the values of the conserved variables are located within the volume element, and not at
nodes or surfaces. Finite volume methods are especially powerful on coarse nonuniform
grids and in calculations where the mesh moves to track interfaces or shocks.

FEM is a mathematical (numerical) tool (just like Finite Difference Method) used to solve
complex physical problems which are not amenable to classical techniques of mathemat-
ics. It has found it’s applications in the fields of Structural Design, Vibration Analysis,
Fluid Dynamics, and Heat Transfer to name a few.

The basic idea in FEM analysis of field problems is as follows:

• The solution domain is discretized into a number of small sub-regions (i.e. Finite
Elements).

• Select an approximating function known as interpolation polynomial to represent
the variation of the dependent variable over the elements.

• Integration of the governing differential equation (often several) with a suitable
Weighting Function over each element to produce a set of algebraic equations - one
equation for each element.

• The set of algebraic equations are then solved to get the approximate solution of
the problem.

In principle, any well-posed Boundary Value Problem can be solved by the techniques of
FEM.

BEM is an important technique in the computational solution of a number of physical or
engineering problems. It is essentially a method for solving partial differential equations.
The boundary element method has the important distinction that only the boundary of the
domain of interest requires discretization. In the BEM, only the boundary is discretized.
Hence, the mesh generation is considerably simpler for this method than for the volume
methods. The boundary element method transforms the differential operator defined
in the domain to integral operators defined on the boundary. Boundary solutions are
obtained directly by solving the set of linear equations. However, potentials and gradients
in the domain can be evaluated only after the boundary solutions have been obtained.

1.6 Important Factors of CFD

1. Physics The physics of fluid flow is governed by the partial dif-
ferential equations. In the field of aerodynamics, the
governing equations are the compressible Navier-Stokes
Equation. In general these are non-linear and no ana-
lytical solutions exist for them.

2. Modeling If the viscosity of the fluid-flow is unimportant
(Re→∞) then the governing equations can be reduced
to the Euler Equations. For particular physical phe-
nomenon, the governing equations can be simplified.
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3. Numerics Grid generation, discretization of the PDE, boundary
conditions, solve a system of algebraic equations. Trun-
cation Errors generated by numerical procedures.

4. Visualization
5. Verification / Validation V&V

1.7 Definition of Computational AeroAcoustics (CAA)

CAA is a sub-discipline of CFD, it has its own objectives, characteristics, issues and
methods.

Objective: To understand the physics of noise/sound generation and propagation, e.g. for
community noise prediction and aircraft certification.

Special Characteristics and Issues:

• Unsteady → Time Domain method

• Long Propagation Distance → FW/H, Kirchhoff

• Large Spectral Bandwidth → Time Domain method

• Radiation and Outflow Boundary Conditions

• Solid Wall and Impedance Boundary Conditions

• Acoustic Wave and Mean Flow Disparity

• Nonlinearity

Requirements on Numerical Schemes:

• Minimum dissipation and dispersion errors⇔ correct prediction on both amplitude
and phase

• Special bounding conditions e.g.

– Radiation

– Outflow

– PML (Perfect Matched Layer)

• Less PPW (Points Per Wave length) possible

1.8 Classification of Fluid Flows/Acoustic Problems

1. The solution region of the problem

2. The nature of the equation describing the problem or

3. The associated boundary conditions
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1.8.1 Classification of Solution Regions

Interior problem: Inner, closed or bounded problem.
(e.g. wave propagation inside a duct)

Exterior problem: Outer, open or unbounded problem.
(e.g. radiation from an oscillating sphere)

1.8.2 Classification of the Nature of the Equations

Mathematical Classification (Classification of Differential Equations)
Elliptic
Parabolic
Hyperbolic

Physical Classification
Viscous Inviscid
Compressible Incompressible
Equilibrium Problem (steady) Marching problems (transient)
Laminar Turbulence
Single-Phase Multiphase

1.8.3 Classification of Boundary Conditions

Dirichlet boundary condition Φ (~r) = p (~r), ~r on S
Neumann boundary condition ∂Φ (~r) /∂n = q (~r)
Mixed boundary condition ∂Φ (~r) /∂n+ h (~r) Φ (~r) = w (~r)

where p (~r), q (~r), h (~r) and w (~r) are explicitly known functions on the boundary S and
Φ is a general value (e.g. pressure, density, . . . ).

1.9 Some CFD and CAA Applications

Figure 1.1: Aerodynamic noise Figure 1.2: Engine noise
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Figure 1.3: Architectural acoustics
Figure 1.4: Environmental noise
and vibration

Figure 1.5: Underwater acoustics Figure 1.6: Music acoustics

Figure 1.7: Medical acoustics Figure 1.8: Industrial acoustics
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1.10 Zonal approach / Example: engine noise computation

To compute the distribution of noise produced by an engine, splitting the region in different
zones is a common procedure (zonal approach). Different numerical techniques are used.

CFD

CAA CAA

far sound field

far sound field

Figure 1.9: Zonal approach to compute engine noise

Inside the engine many effects occur: turbulence, heat, unsteady flow, rotating boundaries.
To obtain the sources of sound inside the engine, CFD with a fine mesh is used to solve
the Navier Stokes equation as accurate as possible. Some methods are:

• Unsteady Reynolds Averaged Navier Stokes (URANS)

• Large Eddy Simulation (LES)

• Direct Numerical Simulaton (DNS)

To calculate the sound propagation outside the engine, where still boundaries exist and the
mean flow is not constant, the calculated sources of sound are used for the CAA methods.
A coarser mesh is sufficient to solve the linearized Euler equation. Some methods are:

• Finite Element Method (FEM), spectral elements

• Discontinious Galerkin

• Arbitrary high order schemes using DERivatives (ADER)

• Finite Difference (FD)

The far field with an almost constant mean flow and without further boundaries can be
calculated by using the well known far field approximations. Some methods are:

• Equivalent Source Method (ESM) (multipol expansion inside CAA / CFD region)

• Boundary Element Method (BEM) (Kirchhoff: poles on boundary)

• Lighthills analogy (equation of Ffowcs-Williams & Hawkings)
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1.11 Mathematical Classification

The conservation principles are expressed as the Partial Differential Equations (PDEs).
The PDEs are therefore at the foundation of computational science. A wide variety of
PDEs are encountered in the study of physical phenonema. The PDEs can be classi-
fied according to mathematical features or according to the type of physical phenonema
involved. It is critical to classify the PDEs since the solution methods depend on the
structure of the equation.
The classical mathematical classification of elementary PDEs sterns from the analysis of
the general second order PDE

AΦxx +BΦxy + CΦyy +DΦx + EΦy + FΦ +G = 0.

The equations of the characteristics in physical space are as follows. The nature of the
equation is therefore determined by the coefficients, according to the following classifica-
tion:

(
dy
dx

)
1,2

= B±
√
B2−4AC
2A

Elliptic B2 − 4AC < 0

Parabolic B2 − 4AC = 0

Hyperbolic B2 − 4AC > 0

Examples of the three types of the PDEs:
Elliptic → Poisson’s equation ∇2u = −ρ/c
Parabolic → Diffusion equation ∂u/∂t = a∂2u/∂x2

Hyperbolic → Wave equation ∂2u/∂t2 = a2∂2u/∂x2

1.12 Definition of Characteristics

Characteristics are lines (2D) or surfaces
(3D) along which certain properties remain
constant or certain derivatives may be dis-
continuous. In case of the one-dimensional
pressure wave equation a general solution is

p′(x, t) = f(x− ct) + g(x+ ct)

where c is the speed of sound, f is a com-
mon plane wave in positive x-direction and
g in negative x-direction. If the wave only
propagates in positive x-direction the pres-
sure is constant along its characteristic ξ =
x−ct = const and therefore the solution pro-
ceeds along this characteristic.

p'

x

t

0

x-ct=const.

Figure 1.10: Characteristic of a plane wave

The characteristics, if they exist and are real curves within the solution domain, represent
the locus of points along which the second derivative may not be continuous.
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The general second order PDE

AΦxx +BΦxy + CΦyy +DΦx + EΦy + FΦ +G = 0

and the differentials

dΦx = Φxxdx+ Φxydy

dΦy = Φyxdx+ Φyydy

can be set to a linear system of equationsA B C
dx dy 0
0 dx dy


︸ ︷︷ ︸
coefficient matrix

·

Φxx

Φxy

Φyy

 =

−(DΦx + EΦy + FΦ +G)
dΦx

dΦy


If the determinant of the coefficient matrix is zero, then there may be no unique solution
for the second derivatives (discontinuity). Using the rule of Sarrus for the coefficient
matrix leads to

Adydy + Cdxdx−Bdxdy = 0

A

(
dy

dx

)2

−Bdy
dx

+ C = 0(
dy

dx

)2

− B

A

dy

dx
+
C

A
= 0.

The solution of this quadratic equation is given in the box above to determine the math-
ematical classification (elliptic, parabolic or hyperbolic PDE).

1.13 The Well-Posed Problem

In order for a problem involving a PDE to be well-posed

1. the solution to the problem must exist,

2. the solution to the problem must be unique and

3. the solution to the problem must depend continuously upon the initial or boundary
data.

Example 1

Demonstrate the problem of continuous dependence on boundary data.

Laplace’s equation:
Uxx + Uyy = 0 −∞ < x <∞ y ≥ 0

Boundary Condition:

U(x, 0) = 0

Uy(x, 0) =
1

n
sin(nx) n > 0

9



Using separation of variables, we obtain

U =
1

n2
sin(nx) sinh(ny)

Analysis:
For large n, we have

U ∼ 1

n2
eny

Uy ∼
1

n
eny

However, from the boundary condition, we have

U(x, 0) = 0

Uy(x, 0) =
1

n
sin(nx)

By comparing the behaviors of Uand Uy from the analysis of the solution and the bound-
ary conditions, we can easily see that the continuity with the initial data is lost. Therefore
the problem is a ill-posed problem.

Since the Laplace’s equation is elliptic type, the solution depends on conditions on the
entire boundary of the closed domain. In the above example, the boundary conditions are
only given on the line y = 0. This caused the problem to be ill-posed.

The correct boundary conditions (e.g.) should be

x = 0, U = U1

x = L, U = U2

y = 0, U = U3

y = H, U = U4

10



Example 2

Solve the second-order wave equation in characteristic coordinates

Uξη = 0, ξ = x+ ct

η = x− ct

Initial data

U(0, η) = ϕ(η)

Uξ(0, η) = ψ(η)

Taylor-series expansion in ξ to obtain

U(ξ, η) = U(0, η) + ξUξ(0, η) +
ξ2

2
Uξξ(0, η) + . . .

We have (due to Uξη (0, η) = 0)

ψ (η) = constant = c1

and (due to the permutability of the second order derivatives and Uξη = 0)

∂Uξη
∂ξ

=
∂Uξξ
∂η

= 0

⇒ Uξξ = f(ξ)

⇒ Uξξ(0, η) = constant = c2

Putting altogether in the Taylor-series expansion we obtain

U(ξ, η) = ϕ(η) + c1ξ +
ξ2

2
c2

= ϕ(η) + g(ξ)

We are not able to uniquely determine the function g(ξ) when the initial data one given
along the characteristic ξ = 0. The problem is ill-posed.
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2 A Review of Finite Difference Methods

2.1 Definitions

Consistency: A finite difference approximation of a partial difference equation (PDE)
is consistent if the finite difference equation (FDE) approaches the PDE
as the grid size (∆x, ∆y, ∆z) approaches zero. FDE ⇒ PDE.

Stability: If errors (truncation, round-off, mistakes) from any source don’t grow
as the calculation proceeds from one marching step to the other.

Convergence: A finite difference scheme is convergent if the solution of the FDE ap-
proaches that of the PDE as the grid size (∆x, ∆y, ∆z) approaches zero.

Lax’s equivalence theorem:
For a well-posed initial value FDE, stability and consistency of the FDE are the necessary
and sufficient condition for convergence.

2.2 Taylor Series Expansion

2.2.1 Examples

Given an analytical function f (x), the values f (xl + ∆x) and f (xl −∆x) can be ex-
panded in a Taylor series about xl as

fl+1 = f (xl + ∆x) =fl +

(
∂f

∂x

)
l

∆x+
1

2!

(
∂2f

∂x2

)
l

∆x2

+
1

3!

(
∂3f

∂x3

)
l

∆x3 + . . .

(2.1)

respectively

fl−1 = f (xl −∆x) =fl −
(
∂f

∂x

)
l

∆x+
1

2!

(
∂2f

∂x2

)
l

∆x2

− 1

3!

(
∂3f

∂x3

)
l

∆x3 + . . .

(2.2)

Eq. (2.1) - Eq. (2.2) results in(
∂f

∂x

)
l

=
fl+1 − fl−1

2∆x
+O

(
∆x2

)
This is known as a three-point-stencil central difference approximation of order O (∆x)2.
For higher order accuracies, such as O (∆x4) and O (∆x6), the first order derivative,

(
∂f
∂x

)
l
,

can be approximated with additional positions as(
∂f

∂x

)
l

=
−fl+2 + 8fl+1 − 8fl−1 + fl−2

12∆x
+O

(
∆x4

)
5-point fourth-order stencil(

∂f

∂x

)
l

=
fl+3 − 9fl+2 + 45fl+1 − 45fl−1 + 9fl−2 − fl−3

60∆x
+O

(
∆x6

)
7-point sixth-order stencil
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For higher order derivatives such as ∂2f
∂x2 and ∂3f

∂x3 , we can derive(
∂2f

∂x2

)
l

=
fl+1 − 2fl + fl−1

(∆x)2 +O
(
∆x2

)
and (

∂3f

∂x3

)
l

=
fi+2 − 2fi+1 + 2fi−1 − fi−2

2 (∆x)3 +O
(
∆x2

)
2.2.2 First Derivative

In general, consider the approximation of the first order spatial derivative ∂f
∂x

by a finite
difference formulation on a uniform grid of spacing ∆x(

∂f

∂x

)
l

=
1

∆x

M∑
j=−N

ajfl+j +O
(
∆xN+M

)
(2.3)

where aj are coefficients to be determined and l is an integer representing a grid point.
The total points of stencils used are (N +M + 1)-point-stencil.

Figure 2.1: Nomenclature of the stencil

Using the Taylor series expansion, we have

(
∂f

∂x

)
l

=
1

∆x

a−N
(
f (xl) +

(
∂f

∂x

)
l

(−N∆x) +

(
∂2f

∂x2

)
l

1

2!
(−N∆x)2 + . . .

)
︸ ︷︷ ︸

fl−N

+ a−N+1

(
f (xl) +

(
∂f

∂x

)
l

(−N + 1) ∆x+

(
∂2f

∂x2

)
l

1

2!
[(−N + 1) ∆x]2 + . . .

)
︸ ︷︷ ︸

fl−N+1

+ . . .

+ a0fl

+ . . .

+ aM−1

(
f (xl) +

(
∂f

∂x

)
l

(M − 1) ∆x+

(
∂2f

∂x2

)
l

1

2!
[(M − 1) ∆x]2 + . . .

)
︸ ︷︷ ︸

fl+M−1

+aM

(
f (xl) +

(
∂f

∂x

)
l

M∆x+

(
∂2f

∂x2

)
l

1

2!
(M∆x)2 + . . .

)
︸ ︷︷ ︸

fl+M

+O
(
∆xN+M

)

13



Gathering terms of same order in derivation and taking 1
∆x

out we get(
∂f

∂x

)
l

=
1

∆x

[
f (xl)

M∑
j=−N

aj + ∆x

(
∂f

∂x

)
l

M∑
j=−N

ajj

+
1

2!
(∆x)2

(
∂2f

∂x2

)
l

M∑
j=−N

ajj
2 + . . .

+
1

(N +M)!
(∆x)N+M

(
∂(N+M)f

∂x(N+M)

)
l

M∑
j=−N

ajj
N+M

]
+O

(
∆xN+M

)
(2.4)

Comparing the left hand side with the right hand side of the equation we obtain the

coefficients for first derivative

M∑
j=−N

aj = 0
from→ f(xL)

(∑
j

aj

)
= ∂f

∂x
+ 0 · f(xL)

M∑
j=−N

ajj = 1
from→ df

dx

∣∣
xL

(∑
j

ajj

)
= ∂f

∂x

M∑
j=−N

ajj
α = 0

from→ dfn

dxn

(∑
j

ajj
α

)
= ∂f

∂x
+ 0 · dfn

dxn

Therefore we get a system to determine the coefficients aj of the stencil, where α = 2,
3, . . ., N + M , there are then N + M + 1 linear algebraic equations with N + M + 1
unknowns aj, j = −N , . . . , M . The unique solution will determine the coefficients aj of
the finite difference approximation.

j0

j1

j2

...
jN+M

 ·


a−N
a−(N+1)

a−(N+2)
...
aM

 =


0
1
0
...
0

 with j =
[
−N −N + 1 · · · M

]

From the above Taylor series expansion (Eq. (2.3)), we have

1

∆x

M∑
j=−N

ajf (xl + j∆x) =

(
∂f

∂x

)
l

+O
(
∆xN+M

)
The order of the truncation error is therefore N +M .
The above procedures show that from the Taylor series expansion the maximum order of
accuracy which can be achieved with a (N +M + 1)-point-stencil is N +M .
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2.2.3 Second Derivative

Similarly, for the second order derivative ∂2f
∂x2 , we have(

∂2f

∂x2

)
l

=
1

(∆x)2

M∑
j=−N

ajfl+j +O
(
∆xN+M−1

)
Using the Taylor series expanxion according to the First Derivative, we have(

∂2f

∂x2

)
l

=
1

(∆x)2

[
f (xl)

M∑
j=−N

aj + ∆x

(
∂f

∂x

)
l

M∑
j=−N

ajj

+
1

2!
(∆x)2

(
∂2f

∂x2

)
l

M∑
j=−N

ajj
3 + . . .

+
1

(N +M)!
(∆x)N+M

(
∂N+Mf

∂xN+M

)
l

M∑
j=−N

ajj
N+M

]
+O

(
∆xN+M−1

)
After Tayler Series Expanxion and comparing the left hand side with the right hand side
of the equation, the coefficients aj can be determined by

coefficients for second derivative

M∑
j=−N

aj = 0

M∑
j=−N

ajj = 0

M∑
j=−N

ajj
2 = 2!

M∑
j=−N

ajj
α = 0

where α = 3, 4, . . . , N +M . The maximum order of accuracy for the Second Derivative
which can be achieved with a (N + M + 1)-point-stencil is N + M − 1, except for the
central difference approximation which is N +M .

The same procedure can be applied to evaluate higher order derivatives.
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2.2.4 Finite Difference Approximation of mixed Partial Derivatives ∂2f
∂x∂y

There are two approaches

(a) Taylor Series Expansion

(b) ∂2f
∂x∂y

= ∂
∂x

(
∂f
∂y

)
We will only discuss the approach (b).

Using
(
∂f
∂y

)
i,j

=
fi,j+1−fi,j−1

2∆y
+O (∆y2), we have

∂2f

∂x∂y
=

∂

∂x

[
fi,j+1 − fi,j−1

2∆y

]
+O

(
∆y2

)

=
1

2∆y

[
∂f

∂x

∣∣∣∣
i,j+1

− ∂f

∂x

∣∣∣∣
i,j−1

]
+O

(
∆y2

)
Applying a second order central differencing for ∂f

∂x
under the assumption of orthogonal

grids
∂f

∂x

∣∣∣∣
i,j+1

=
fi+1,j+1 − fi−1,j+1

2∆x
+O

(
∆x2

)
∂f

∂x

∣∣∣∣
i,j−1

=
fi+1,j−1 − fi−1,j−1

2∆x
+O

(
∆x2

)
we have

∂2f

∂x∂y
=
fi+1,j+1 − fi−1,j+1 − fi+1,j−1 + fi−1,j−1

4∆x∆y
+O

(
∆x2,∆y2

)
Similarly, if a first order forward differencing is used, we can then have

∂2f

∂x∂y
=
fi+1,j+1 − fi,j+1 − fi+1,j + fi,j

∆x∆y
+O (∆x,∆y)

2.2.5 Finite Differencing for Unequally Spaced Grid points

Following the procedures below, we can derive the first order approximation for the second
order derivative and the second order approximation for the first order derivative.

(a) Taylor Series Expansions for f (x+ ∆x) and f (x+ (1 + α) ∆x) around x.

i i+1 i+2

x∆ x∆α

......

(b) Sum up Taylor Series Expansions: − (1 + α) f (x+ ∆x) + f (x+ (1 + α) ∆x)

⇒ ∂2f

∂x2
=
fi+2 − (1 + α) fi+1 + αfi

1
2
α (1 + α) (∆x)2 +O (∆x)

(c) Replace
(
∂2f
∂x2

)
i

in the Taylor series expansion for f (x+ ∆x) by the above equation,

we have

⇒ ∂f

∂x
=
−fi+2 + (1 + α)2 fi+1 − α (α + 2) fi

α (1 + α) ∆x
+O

(
∆x2

)
16



2.3 Consistency analysis of the schemes

2.3.1 Example I: FTCS

Heat conduction equation

∂T
∂t

= γ ∂
2T
∂x2

Scheme
FTCS: Forward in Time and Central in Space

Tn+1
i −Tni

∆t
= γ

Tni+1−2Tni +Tni−1

(∆x)2 (FDE)

Expand each T in a Taylor series expansion about T ni (i: position, n: time)

T n+1
i = T ni +

(
∂T
∂t

)n
i

∆t+
(
∂2T
∂t2

)n
i

(∆t)2

2!
+O(∆t3)

T ni+1 = T ni +
(
∂T
∂x

)n
i

∆x+
(
∂2T
∂x2

)n
i

(∆x)2

2!
+
(
∂3T
∂x3

)n
i

(∆x)3

3!
+O(∆x3)

T ni−1 = T ni −
(
∂T
∂x

)n
i

∆x+
(
∂2T
∂x2

)n
i

(∆x)2

2!
−
(
∂3T
∂x3

)n
i

(∆x)3

3!
+O(∆x3)

Substituting the above Taylor series expansion into the FDE

1
∆t

T ni +

(
∂T

∂t

)n
t

∆t+

(
∂2T

∂t2

)n
i

∆t2

2!
+O(∆t3)︸ ︷︷ ︸

Tn+1
i

−T ni



= γ

(∆x)2

T ni +

(
∂T

∂x

)n
i

∆x+

(
∂2T

∂x2

)n
i

(∆x)2

2!
+

(
∂3T

∂x3

)n
i

(∆x)3

3!
+O(∆x3)︸ ︷︷ ︸

Tni+1

−2T ni

+T ni −
(
∂T

∂x

)n
i

∆x+

(
∂2T

∂x2

)n
i

(∆x)2

2!
−
(
∂3T

∂x3

)n
i

(∆x)3

3!
+O(∆x3)︸ ︷︷ ︸

Tni−1


Simplify the above equation[

∂T
∂t

+ ∂2T
∂t2

∆t
2!

+O(∆t)2
]

= γ
[
∂2T
∂x2 +O(∆x2)

]
or

∂T
∂t

= γ ∂T
∂x2 − ∆t

2
∂2T
∂t2

+O [(∆t2) , (∆x2)]

If
∆t→ 0
∆x→ 0

the FDE → PDE.

We have ∂T
∂t

= γ ∂
2T
∂x2 , the method is therefore consistent.
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2.3.2 Example II: CTCS

Heat conduction equation

∂T
∂t

= γ ∂
2T
∂x2

The Dufort-Frankel Scheme (Central in Time and Central in Space)
CTCS
↑ γ with modification

Tn+1
i −Tn−1

i

2∆t
= γ

Tni+1−2
Tn+1
i

+Tn−1
i

2
+Tni−1

∆x2 (FDE)

Expand T n+1
i , T n−1

i , T ni−1 and T ni+1 in a Taylor series about T ni and
substitute the results into the above FDE, we have

∂T
∂t

+ γ ∂
2T
∂t2

(
∆t
∆x

)2
= γ ∂

2T
∂x2 +O [(∆t2) , (∆x2)] or

∂T
∂t

= γ ∂
2T
∂x2 +O

[
(∆t2) , (∆x2) ,

(
∆t
∆x

)2
]

The method is consistent if only ∆t and ∆x approach zero and if ∆t
∆x
→ 0.

If
(

∆t
∆x

)
→ C (constant), we have

∂T
∂t

+ γC2 ∂2T
∂t2

= γ ∂
2T
∂x2 hyperbolic equation

In this case, the method is not consistent.

2.4 Von Neumann Stability Analysis

When one applies finite difference methods blindly, it is very easy to create one that is
unstable. That is very small error can grow until a solution variable “blows up”. Von
Neumann stability analysis is one of those easy methods that give a necessary condition
for stability. Although the actual stability requirement may be more restrictive than the
one obtained from the Von Neumann stability analysis, the results from the Von Neumann
stability analysis can provide very useful insight on stability requirements.

Von Neumann analysis is derived from a Fourier series representation of a finite difference
equation. The decay or growth of the amplification factor indicates whether or not the
numerical algorithm is stable. In general, the linearization of the equation is a requirement
for the application of the von Neumann analysis. A locally linearized equation should be
used for a nonlinear equation. The procedures are quite simple.

The followings are three examples of using von Neumann stability analysis to decide
the stability of a finite difference method.
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2.4.1 Example I: The unsteady heat conduction equation in one-dimension

∂U

∂t
= γ

∂2U

∂x2

The equation can be discretized in FTCS formulation as

Un+1
i − Un

i

∆t
= γ

Un
i+1 − 2Un

i + Un
i−1

(∆x)2 (2.5)

Assuming a Fourier component for Un
i in space where I is the imaginary number

Un
i = UneIθi

Un+1
i = Un+1eIθi

Un
i±1 = UneIθ(i±1)

By substituting the Fourier components into the above equation (2.5), we have

Un+1 = Un [1 + 2d(cos θ − 1)]

→ Un+1 = GUn

where

d =
∆t

(∆x)2γ, cos θ =
eIθ + e−Iθ

2
, G = 1− 2d (1− cos θ)

The stability requirement is that the value of the amplification factor G, must be bounded
for all values of θ. That is

|G| ≤ 1

or

1− 2d (1− cos θ) ≤ 1

and

1− 2d (1− cos θ) ≥ −1

for all θ
⇓

Therefore the stability condition for the FTCS scheme is d ≤ 1
2

or γ∆t ≤ 1
2
(∆x)2.

When there are more than two time levels involved in a FDE, after applying the von
Neumann stability analysis the equations are expressed in a matrix form such as (for a
three time level discretization Un+1 = AUn +BUn−1)[

Un+1

Un

]
=

[
A B
1 0

] [
Un

Un−1

]
Now the amplification factor G is a matrix

G =

[
A B
1 0

]
The stability criterion is then that the eigenvalues of G (λi) must satisfy the stability
condition |λi| ≤ 1.
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2.4.2 Example II: The 1-D ”wave equation”

∂U

∂t
+ a

∂U

∂x
= 0 with a > 0

Several methods are considered for the von Neumann stability analysis in the following.

• Euler Explicit Method (FTFS: Forward in Time and Forward in Space)

FDE ⇒ Un+1
i −Uni

∆t
+ a

Uni+1−Uni
∆x

= 0 a > 0

with Un
i = UneIθi, Un+1

i = Un+1eIθi, Un
i+1 = UneIθ(i+1)

we have 0 = Un+1eIθi−UneIθi
∆t

+ aU
neIθ(i+1)−UneIθi

∆x

0 = Un+1−Un
∆t

+ a
∆x

[
UneIθ − Un

]
Un+1 − Un + a∆t

∆x

[
UneIθ − Un

]
= 0

Un+1 = Un
[
1 + a∆t

∆x

(
−eIθ + 1

)]
= GUn

where G = 1 + a∆t
∆x
− a∆t

∆x
eIθ = 1 + d(1− cos θ)− id sin θ

Since we have |G| > 1, FTFS method for this problem is
unconditional unstable!

• The first upwind differencing method (FTBS: Foward in Time, Backward in Space)

FDE ⇒ Un+1
i −Uni

∆t
= −aU

n
i −Uni−1

∆x

Application of the von Neumann stability analysis yields

Un+1 = Un
(
1− c+ ce−Iθ

)
where c = a∆t

∆x
, the Courant number. The stability condition is therefore c ≤ 1.

Please note that for a case of a < 0, a forward differencing in space must be used.

• The Lax method

Using the von Neumann stability analysis, we can show that Euler’s FTCS method
is unconditional unstable, i.e.

Un+1
i − Un

i

∆t
= −a

Un
i+1 − Un

i−1

2∆x
unconditional unstable!

but if we replace Un
i by Un

i = 1
2

(
Un
i+1 + Un

i−1

)
, we have

Un+1
i =

1

2

(
Un
i+1 + Un

i−1

)
− a∆t

2∆x

(
Un
i+1 − Un

i−1

)
Von Neumann stability analysis shows that the Lax method is conditional stable
when c ≤ 0.
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• The Lax-Wentroff method

From Taylor series expansion, we have

U (x, t+ ∆t) = U (x, t) +
∂U

∂t
∆t+

∂2U

∂t2
(∆t)2

2!
+O (∆t)3

i.e.

Un+1
i = Un

i +
∂U

∂t
∆t+

∂2U

∂t2
(∆t)2

2!
+O (∆t)3

From the ”wave equation”, we have

∂U

∂t
= −a∂U

∂x

→ ∂2U

∂t2
= −a ∂

∂t

(
∂U

∂x

)
= −a ∂

∂x

(
∂U

∂t

)
= a2∂

2U

∂x2

Substituting ∂U
∂t

and ∂2U
∂t2

from the above equations into the Taylor series expansion

Un+1
i = Un

i +

(
−a∂U

∂x

)
∆t+

(∆t)2

2

(
a2∂

2U

∂x2

)
Using 2nd–order central differencing method for the spatial derivatives, we have

Un+1
i = Un

i − a∆t

[
Un
i+1 − Un

i−1

2∆x

]
+

1

2
a2 (∆t)2

[
Un
i+1 − 2Un

i + Un
i−1

(∆x)2

]
This explicit scheme is stable when c ≤ 1. The order of accuracy isO

[
(∆t)2 , (∆x)2].

• Euler’s implicit method (BTCS: Backward in Time, Central in Space)

FDE ⇒ Un+1
i −Uni

∆t
= − a

2∆x

(
Un+1
i+1 − Un+1

i−1

)
After applying the above equation to all the grid points at the time level n + 1
(unknown), a set of linear algebraic equations will need to be solved. The equations
can be represented in a matrix form, where the coefficient matrix is tridiagonal.
The method is unconditional stable and the accuracy is of order (∆t) , (∆x)2

• The McCormack Method

The method is a multi-level method and is widely used for solving fluid flow equa-
tions.

Predictor:
U∗i −Uni

∆t
= −aU

n
i+1−Uni

∆x

Corrector:
Un+1
i −U

n+ 1
2

i
1
2

∆t
= −aU

∗
i −U∗i−1

∆x

After the term U
n+ 1

2
i is replaced by an average value U

n+ 1
2

i = 1
2

(Un
i + U∗i ) we have

Corrector: Un+1
i = 1

2

[
(Un

i + U∗i )− a∆t
∆x

(
U∗i − U∗i−1

)]
The method is explicit and conditional stable when a∆t

∆x
≤ 1
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• Splitting methods and Multi-step Methods

Splitting methods: It is to split a finite difference scheme into a sequence of one-
dimensional operations and then to solve them sequentially.

e.g. ADI method (Alternative Direction Implicit method) for ∂U
∂t

= α
[
∂2U
∂x2 + ∂2U

∂y2

]
U
n+ 1

2
i,j − Un

i,j

∆t
2

= a

Un+ 1
2

i+1,j − 2U
n+ 1

2
i,j + U

n+ 1
2

i−1,j

(∆x)2 +
Un
i,j+1 − 2Un

i,j + Un
i,j−1

(∆y)2


and

Un+1
i,j − U

n+ 1
2

i,j

∆t
2

= a

Un+ 1
2

i+1,j − 2U
n+ 1

2
i,j + U

n+ 1
2

i−1,j

(∆x)2 +
Un+1
i,j+1 − 2Un+1

i,j + Un+1
i,j−1

(∆y)2


Multi-step Methods: These methods have in general two steps. In the first step,
a temporary value for the dependent variable is predicted. In the second step, a
corrected value is computed to give the final value of the dependent variable.
e.g. The McCormack Method.

2.5 Fourier Error Analysis

In order to choose a finite difference scheme for a given application, we must be able to
access the accuracy of the scheme. Although a leading error term can be determined
from a Taylor series expansion, this measure only provides very limited information. The
Fourier error analysis can describe the error behavior of a finite difference scheme.

An arbitrary periodic function can be decomposed into its Fourier components, which are
in the form eiαx, where α is the wavenumber and i the imaginary number.

Let us consider the following function and its first derivative

f (x) = eiαx

df
dx

= iαeiαx (analytical solution of the first derivative)

In the following, the numerical solution of the first derivative is determined and compared
with the analytical.
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2.5.1 Using a second-order central differencing(
df

dx

)
j

=
fj+1 − fj−1

2∆x
+O

(
∆x2

)

=
eiα(j∆x+∆x) − eiα(j∆x−∆x)

2∆x
+O

(
∆x2

)
=
eiαxj

(
eiα∆x − e−iα∆x

)
2∆x

+O
(
∆x2

)
(
∂f

∂x

)
j

≈ 1

2∆x
[(cosα∆x+ i sinα∆x)− (cosα∆x− i sinα∆x)] eiαxj

= i
sinα∆x

∆x︸ ︷︷ ︸
=α∗

eiαxj

= iα∗eiαxj (numerical solution of the first derivative)

where α∗ = sinα∆x
∆x

is the effective or modified wavenumber.

Note that α∗ approximates α to second-order accuracy as expected.

α∗ = α− α3∆x2

6
+ . . .
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2.5.2 Using a fourth-order central differencing

df

dx

∣∣∣∣
j

=
−fj+2 + 8fj+1 − 8fj−1 + fj−2

12∆x
+O

(
∆x4

)

=
−eiα(xj+2∆x) + 8eiα(xj+∆x) − 8eiα(xj−∆x) + e

iα(xj−2∆x)

12∆x
+O

(
∆x4

)
=
eiαxj

[
−e2iα∆x + 8eiα∆x − 8e−iα∆x + e−iα2∆x

]
12∆x

+O
(
∆x4

)
(
∂f

∂x

)
j

≈
[
−sin (2α∆x)

6∆x
+

4 sinα∆x

3∆x

]
ieiαxj

= iα∗eiαxj

where α∗ = −sin (2α∆x)

6∆x
+

4 sinα∆x

3∆x

= α− 4α5∆x4

3∆x5!
+ . . .
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Note that this time α∗ approximates α to fourth-order accuracy as expected.
From the above two examples, we also have noticed that the modified wavenumber is
purely real when a central differencing is applied.
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2.5.3 Using a second-order backward differencing

df

dx

∣∣∣∣
j

=
3fj − 4fj−1 + fj−2

2∆x
+O

(
∆x2

)

=
3eiα(xj) − 4eiα(xj−∆x) + eiα(xj−2∆x)

2∆x
+O

(
∆x2

)
=
eiαxj

[
3− 4e−iα∆x + e−2iα∆x

]
2∆x

+O
(
∆x2

)
=
eiαxj [(3− 4 cosα∆x+ cos 2α∆x) + i (4 sinα∆x− sin 2α∆x)]

2∆x
+O

(
∆x2

)
(
∂f

∂x

)
j

≈
[
−i3− 4 cosα∆x+ cos 2α∆x

2∆x
+

4 sinα∆x− sin 2α∆x

2∆x

]
ieiαxj

= iα∗eiαxj

where α∗ = −
[

3− 4 cosα∆x+ cos 2α∆x

2∆x

]
i+

4 sinα∆x− sin 2α∆x

2∆x

= −i17

4!
α4∆x3 + α +

α3

3
∆x2
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When a non-central differencing is applied, the modified wavenumber is complex, with
the imaginary component being entirely error. The imaginary component can be avoided
by using central differencing schemes. In general, the modified wavenumber has both real
and imaginary parts. By assuming an harmonic function eiα

∗∆x, the numerical error in
the phase (dispersion) is determined from the real part of the modified wavenumber and
the numerical error in amplitude (dissipation) is determined from the imaginary part of
the modified wavenumber.
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All differencing methods are shown here:
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For small α∗, the approximation of α by α∗ is good. For higher α the accuracy of α∗ de-
creases. For high-order schemes, however, the accuracy of α∗ prolongs for higher wavenum-
bers. That’s why greater wavelenghts or lower frequencies can be computed more accurate
by high order schemes.

One can see from the image above, how many points per wavelength (PPW) is needed to
get an accurate approximation for a distinct frequency. PPW is determined by λ

∆x
, where

λ is the wavelength. The definition of the wavenumber is given by

α =
2π

λ
⇒ λ =

2π

α
⇒ PPW =

2π

α∆x

hence for α∆x = 0.5π 4 PPW are necessary.

Considering the image above, for a second-order central differencing scheme the highest
resolvable wavenumber is about α∆x ≈ π

10
, that are about 20 PPW. For a fourth-order

central differencing scheme the highest resolvable wavenumber is about α∆x ≈ π
6
, that

are about 12 PPW.
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3 Optimized Spatial Discretization

Literature: Tam [2], Lele [1]

Consider the model wave equation.

∂U

∂t
+ c

∂U

∂x
= 0 (3.1)

with the fundamental solution
U (x, t) = ei(αx−ωt) (3.2)

Without the loss of generality, we assume that c > 0 with. Substituting (3.2) into (3.1)
we have

ei(αx−ωt) (−iω + icα) = 0 (3.3)

To let this equation be true and therewith equation (3.1), it’s required that

ω = cα .

This is the ideal dispersion relation for the model wave equation.

After using the spatial discretization for the first order spatial derivative on a uniform
grid of spacing ∆x we get (

∂U

∂x

)
l

≈ 1

∆x

M∑
j=−N

ajUl+j (3.4)

where Ul+j = U ((l + j) ∆x, t),
(
∂U
∂x

)
l

= ∂U(l∆x,t)
∂x

and aj are coefficients which will be
determined according to required order of accuracy and other properties.
Substituting the above equation (3.4) into equation (3.1), we obtain a system of semi-
discrete ordinary differential equations(

dU

dt

)
l

+
c

∆x

M∑
j=−N

ajUl+j = 0 (3.5)

Consider the fundamental solution of equation (3.5) with a given wave number α in the
form of

Us (l∆x, t) = ei(αl∆x−ωt) (3.6)

where s stands for semi-discrete to distinguish it from the fundamental solution given in
equation (3.2). Substituting equation (3.6) into equation (3.5), we have

ei(αl∆x−ωt)

[
−iω +

c

∆x

M∑
j=−N

αje
iαj∆x

]
= 0

In comparison with the solution of the original solution (3.3), we see that the effective
numerical wavenumber ᾱ is defined as

− iω + icᾱ = −iω +
c

∆x

M∑
j=−N

αje
iαj∆x

⇒ ᾱ = − i

∆x

M∑
j=−N

αje
iαj∆x (3.7)

27



Then the dispersion relation of the semi discrete equation (3.5) is given as

ω = cα

From the above dispersion relation, we can write the fundamental solution with a given
wavenumber α of the semi-discrete equation (equation (3.5)) as

Us (l∆x, t) = ei(αl∆x−cαt) = ei[αl∆x−c(ᾱr+iᾱi)t] = eiα[l∆x−c(
ᾱr
α )t]ecᾱit (3.8)

where α = αr + iαi.

The phase velocity vp = c (αr/α) is no longer a constant, unless that ᾱr = α (not possible
in a numerical solution). Waves with different wavenumbers therefore propagate with
different speeds, above or below the speed of sound. For an initial wave with different
wavenumbers, its wave shape is no longer possible to be kept unchanged. That’s why an
pulse isn’t kept unmodified. This phenomenon is called dispersion, whereupon the real
part of the numerical wavenumber ᾱr is responsible for. [2]

Note that if αi 6= 0, in addition to traveling with different speeds, waves with different
wavenumbers are now growing or diminishing with different factors. This phenomenon
is called dissipation, at which the imaginary part of the numerical wavenumber ᾱi is
responsible for.

cαi > 0 unstable (growing)
cαi < 0 stable (diminishing)
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unstable

stable

Comparing fundamental solutions from semi-discrete equation (3.8) and analytical equa-
tion (3.2), we have

Us (l∆x, t)

U (l∆x, t)
= eic(α−αr)tecαit (3.9)

Therefore the phase and the magnitude errors introduced by the spatial discretization of
equation (3.1) are ∣∣Φs(t) − Φ

∣∣ = |c (α− αr) t| (phase)
G (t) = ecαit (amplitude)
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In order to minimize the dispersion and the dissipation errors in a numerical scheme, we
would like to revisit equation (3.7)

α =
−i
∆x

M∑
j=−N

aje
iαj∆x

where α: the effective wave number of the finite difference approximation.
α∆x: is a periodic function with a period of 2π.

Equation (3.7) can be rewritten as

α∆x = −i
M∑

j=−N

aje
iαj∆x

= −i
M∑

j=−N

[aj cos (αj∆x) + iaj sin (αj∆x)]

=
M∑

j=−N

aj sin (αj∆x)− i
M∑

j=−N

aj cos (αj∆x)

By considering α = αr + iαi and comparing the left hand side of the equation with the
right hand side we obtain:

αr∆x =
M∑

j=−N
aj sin (αj∆x) (3.10)

αi∆x = −
M∑

j=−N
aj cos (αj∆x) (3.11)

So one aim for optimization is to let αr∆x→ α∆x (minimization of dispersion error) and
αi∆x→ 0 (minimization of the dissipation error).

For optimization purpose, a range of wavenumbers in which the integrated error should
be small has to be defined. In the following picture the optimization range is set to δ in
general.
To assure minimum local truncation errors over a given range of wavenumbers, e.g. waves
with wavelength longer than 4∆x (i.e. λ ≥ 4∆x) or α∆x ≤ π

2
= δ, the integrated error

is defined with the Euclidian Norm as

E :=

∫ δ

−δ
|αr∆x− αr∆x|2 d (α∆x)

+

∫ δ

−δ

∣∣∣∣∣αr∆x+ sgn (c) exp

[
− ln 2

(
α∆x− π

σ

)2
]∣∣∣∣∣

2

d (α∆x)

(3.12)

in which the second summand represents the imaginary part of the numerical wavenumber
ᾱi∆x.

For now, let’s consider a central finite difference scheme (αi = 0, M = N).

E :=
∫ δ
−δ |α∆x− α∆x|2 d (α∆x) (3.13)
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In order to have αi = 0, the coefficients aj must be antisymmetric, i.e.,

a0 = 0

a−j = −aj

α∆x = αr∆x =
N∑

j=−N

aj sin (αj∆x)

= 2
N∑
j=1

aj sin (αj∆x)

Substitute the above expression for α∆x into equation (3.13), we have

E =

∫ δ

−δ

[
α∆x− 2

N∑
j=1

aj sin (αj∆x)

]2

d (α∆x) (3.14)

The conditions for E to be minimum are

∂E

∂aj
= 0, j = 1, 2 . . . N.

Theoretically there are N equations for N coefficients aj. If aj are determined solely by
Taylor Series expansion, the order of accuracy that can be achieved by a seven-point-
stencil is 6. By considering the coefficients’ antisymmetry a−j = −aj as well as a0 = 0,
the coefficients for the first derivative can be evaluated with the box on page 14

2
3∑
j=1

ajj = 1

2
3∑
j=1

ajj
3 = 0

2
3∑
j=1

ajj
5 = 0



a1 = 45
60

a2 = − 9
60

a3 = 1
60(

∂f

∂x

)
l

=
fl+3 − 9fl+2 + 45fl+1 − 45fl−1 + 9fl−2 − fl−3

60∆x
+O

(
∆x6

)
30



If we combine the Taylor series method and the wavenumber space optimization method
for a seven-point-stencil scheme,

1) keep the order of accuracy 4 and solve the resulting linear system of equations (choose
a1 as a free parameter (without loss of generality)):

2
3∑
j=1

ajj = 1

2
3∑
j=1

ajj
3 = 0

 O
(
∆x4

)

⇒ a2 = 9
20
− 4

5
a1

a3 = − 2
15

+ 1
5
a1

2) substitute a2 and a3 into equation (3.14), the integrated error E is a function of a1

along. In the following the range of optimization is set to δ = π
2
. The value of aj can be

decided by the condition

∂E
∂a1

= 0 (3.15)

i.e.

E = 2

∫ δ

0

[
β − 2

3∑
j=1

aj sin (jβ)

]2

dβ where β = α∆x

∂E
∂a1

=0

−−−−→ −4

∫ δ

0

[
β − 2

3∑
j=1

aj sin (jβ)

][
3∑
j=1

∂aj
∂a1

sin (jβ)

]
dβ = 0 (3.16)

and thus

a0 = 0
a1 = −a−1 = 0.79926643
a2 = −a−2 = −0.18941314
a3 = −a−3 = 0.02651995

The numerical scheme developed above by combining the Taylor series method with the
wavenumber space optimization method is called the Dispersion Relation Preserving
scheme (DRP) [2], which minimizes the dispersion error.
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4 Optimized Time Discretization

Literature: Tam [4], Hu [1, 2]

There are two types of explicit time-marching schemes.

(a) Single-step scheme (e.g. Runge-Kutta method)

(b) Multi-step scheme (e.g. Adams-Bashford method)

We will discuss the optimized multi-step method.

Suppose ~u(t) is an unknown vector and the time axis is divided into a uniform grid time
step ∆t. Assuming that ~u and d~u

dt
are known at time level n, n− 1, n− 2 and n− 3. One

can get the value of the next time step (n+ 1) by

~u(n+1) = ~u(n) + ∆t
3∑
j=0

bj

(
d~u

dt

)(n−j)

(4.1)

↑
a weighted average of the time derivatives

(4-level finite difference approximation)

Four coefficients, b0, b1, b2 and b3 need to be determined. Using the Taylor series expansion
around n for the derivative of time, the last term on the right side of equation (4.1) can
be written as

∆t
3∑
j=0

bj

(
∂~u

∂t

)(n−j)

= ∆tb0

(
∂~u

∂t

)(n)

+ ∆tb1

[(
∂~u

∂t

)(n)

−
(
∂2~u

∂t2

)(n)

∆t+
1

2!

(
∂3~u

∂t3

)(n)

∆t2 − 1

3!

(
∂4~u

∂t4

)(n)

∆t3 + . . .

]

+ ∆tb2

[(
∂~u

∂t

)(n)

−
(
∂2~u

∂t2

)(n)

(2∆t) +
1

2!

(
∂3~u

∂t3

)(n)

(2∆t)2 − 1

3!

(
∂4~u

∂t4

)(n)

(2∆t)3 + . . .

]

+ ∆tb3

[(
∂~u

∂t

)(n)

−
(
∂2~u

∂t2

)(n)

(3∆t) +
1

2!

(
∂3~u

∂t3

)(n)

(3∆t)2 − 1

3!

(
∂4~u

∂t4

)(n)

(3∆t)3 + . . .

]

Substitute the above expression into equation (4.1), we have

~u(n+1) − ~u(n)

∆t
= [b0 + b1 + b2 + b3]

(
∂~u

∂t

)(n)

+ [−b1 − 2b2 − 3b3] ∆t

(
∂2~u

∂t2

)(n)

+

[
b1

2!
+
b2

2!
(2)2 +

b3

2!
(3)2

]
∆t2

(
∂3~u

∂t3

)(n)

+

[
−b1

3!
− b2

3!
(2)3 − b3

3!
(3)3

]
∆t3

(
∂4~u

∂t4

)(n)

+O
(
∆t4
)
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or

~u(n+1) = ~u(n) + [b0 + b1 + b2 + b3] ∆t

(
∂~u

∂t

)(n)

+ [−b1 − 2b2 − 3b3] ∆t2
(
∂2~u

∂t2

)(n)

+

[
b1

2!
+
b2

2!
(2)2 +

b3

2!
(3)2

]
∆t3

(
∂3~u

∂t3

)(n)

+

[
−b1

3!
− b2

3!
(2)3 − b3

3!
(3)3

]
∆t4

(
∂4~u

∂t4

)(n)

+O
(
∆t5
)

Compared to the Taylor series expansion for ~u(n+1)

~u(n+1) = ~u(n)+∆t

(
∂~u

∂t

)(n)

+
1

2!
∆t2

(
∂2~u

∂t2

)(n)

+
1

3!
∆t3

(
∂3~u

∂t3

)(n)

+
1

4!
∆t4

(
∂4~u

∂t4

)(n)

+O
(
∆t5
)

we can set

3∑
j=0

bj = 1
3∑
j=1

bjj = −1

2

3∑
j=0

bjj
2 =

1

3

3∑
j=0

bjj
3 = −1

4

The four coefficients bj of equation (4.1) can be completely determined. In order to
construct an optimized multi-level scheme, we will choose three of the four coefficients bj
(e.g. j =1, 2, 3)

3∑
j=0

bj = 1

3∑
j=1

bjj = −1
2

3∑
j=0

bjj
2 = 1

3

3∑
j=0

bjj
3 = −1

4



b1 = −3b0 + 53
12

b2 = 3b0 − 16
3

b3 = −b0 + 23
12

The remaining coefficient b0 will be determined by the optimization. The time discretiza-
tion is therefore of 3rd order.

The optimization is done by demanding the Laplace transform of the finite difference
scheme (eq. (4.1)) to be a good approximation of that of the partial derivative. The
Laplace transform and its inverse of a function f(t) are related by

f̃ (ω) =
1

2π

∞∫
0

f (t) eiωtdt

f (t) =

∫
Γ

f̃ (ω) e−iωtdω
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Figure 4.1: upper ω̂ half plane (Tam and Auriault [3])

The inverse contour Γ is a line in the upper half ω-plane parallel to the real-ω-axis above
all poles and singularities.

Let us write equation (4.1) with a continuous variable

~u (t+ ∆t) = ~u (t) + ∆t
3∑
j=0

bj
∂~u (t+ j∆t)

∂t
(4.2)

Applying the Laplace transform to equation (4.2) and using the shifting theorem

f̃ (t+ ∆t) = e−iω∆tf̃

we have

ũe−iω∆t = ũ+ ∆t

(
3∑
j=0

bje
iωj∆t

)
∂ũ

∂t

⇒
ũ
[
e−iω∆t − 1

]
∆t

3∑
j=0

bjeiωj∆t
=
∂ũ

∂t

With derivative theorem
∂ũ

∂t
= −iωũ

we have
e−iω∆t − 1

∆t
3∑
j=0

bjeiωj∆t
= −iω

By comparing the two sides of the above equation we have

ω =
i
(
e−iω∆t − 1

)
∆t

3∑
j=0

bjeiωj∆t

where ω̄ is the effective angular frequency. The integrated error E1 is then defined as

E1 =

η∫
−η

{
σ [Re (ω∆t− ω∆t)]2 + (1− σ) [Im (ω∆t− ω∆t)]2

}
d (ω∆t)
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Where σ ∈ [0; 1] is the weighting factor and η is the frequency range we would like to
have a good approximation between ω and ω (similar to the optimization range δ for the
spatial approximation). Therefore, the aim is to get ω̄ = ω. If σ = 1, only the real part
of the deviation is considered, thus the dispersion. If σ = 0, only the imaginary part is
considered, thus the dissipation.

To achieve a minimum integrated error, we need the condition for the undetermined
coefficient b0

∂E1

∂b0

= 0

For σ = 0.36 and η = 0.5 we can determine the coefficients as

b0 = 2.3025580888, b1 = −2.4910075998

b2 = 1.5743409332, b3 = −0.3858914222

4.1 Group Velocity Consideration

Literature: Tam [4]

Let A (x, t) be a fundamental solution of the (one-dimensional) wave equation

∂2A

∂x2
−
(α
w

)2 ∂2A

∂t2
= 0

We have
A (x, t) = A0 cos (αx− ωt)

and the phase velocity

vph =
ω

α

Consider a simple wave packet formed out of the superposition of two cosine waves

A (x, t) = cos [(α−∆α)x+ (ω −∆ω) t] + cos [(α−∆α)x− (ω −∆ω) t]

Using a trigonometric identity

cos [(αx− ωt)± (∆αx−∆ωt)]

= cos [(αx− ωt) cos (∆αx−∆ωt)∓ sin (αx− ωt) sin (∆αx−∆ωt)]

Therefore
A (x, t) = 2 cos (αx− ωt) cos (∆αx−∆ωt)

Now think of this wave packet as a cosine wave of frequency ω and wave number α
modulated by a cosine function cos (∆αx−∆ω t). The modulated function is itself a
wave, and the phase velocity of this modulation wave is v = dω/dα.

E.g. ω = 6 rad/sec α = 6 rad/meter
dω = 0.1 rad/sec dα = 0.3 rad/meter

The phase velocity of the internal oscillations is vph = ω/α = 1 meter/sec whereas the
modulation envelope wave has a phase velocity vgr = dω/dα = 0.33 meter/sec.
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The group velocity is the rate at which modulations within a wave travel through a
given medium and information are transported.

For the DRP (Dispersion-Relation-Preserving) scheme, the dispersion relation of the wave
is given as

ω (ω) = ω (α (α)) .

(Assuming waves propagate in the x-direction only) The group velocity of the wave is

vgr =
dω

dα
=
dω

dω

dω

dα

dα

dα
=

dω
dα

dα
dα

dω̄
dω

With an acceptable approximation dω̄
dω
' 1 and from the numerical dispersion relation

dω̄
dᾱ
' c we obtain

vgr ≈ c
dᾱ

dα

If dα
dα

= 1, the scheme is then to reproduce the same group velocity of the original partial
differential equation.

Finally, the requirements on the numerical method for correct predictions should be

vgr : dᾱ
dα

!
= 1 and vph : ᾱ

α

!
= 1.
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5 Review of The Basic- Governing Equations of Fluid

Dynamics

The basic governing equations of fluid dynamics are

• Continuity (Conservation of mass)

• Momentum (Newton’s second law)

• Energy (Conservation of energy, The first law of thermodynamic)

All the equations can be derived from the Reynolds Transport Theorem.

Consider a system and a control volume (C.V.) as follows:

• The system occupies C.V. (IrII) at time t

• The same system occupies C.V. (IIrIII) at time t+ ∆t

• The total rate of change of any extensive property Bsys of a system occupying a
control volume at time t is equal to the sum of the following two terms

(a) the temporal rate of change of Bsys within the C.V.

(b) the net flux of Bsys through the control surface (C.S.) that surrounds the C.V.

The theorem can be applied to any transportable property, such as mass, momentum and
energy.

dBsys

dt
=

∂

∂t

∫
C.V.

bρdV +

∫
C.S.

bρ~u · ~ndA

where ~n is a unit vector normal to the C.S. with positive pointing outward from the con-
trol surface.

From Gauss Theorem ∫
S

~a · ~ndA =

∫
V

~∇ · ~adV

⇒
∫
C.S.

bρ~u · ~ndA =

∫
C.V.

~∇ · (bρ~u) dV

we then have
DBsys

Dt
=

∂

∂t

∫
C.V.

bρdV +

∫
C.V.

~∇ (bρ~u) dV

Conservation of mass

• Bsys = msys with Dmsys
Dt

= 0

• b = 1

• ⇒ 0 =
∫
C.V.

dρ
dt

+
∫
C.V

~∇ · (ρ~u) dV

The differential form of the conservation of mass

∂ρ

∂t
+ ~∇ · (ρ~u) = 0
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Momentum (linear)

•
−→
B sys = (m~u)sys

• ~b = ~u

The differential form of the equation of motion

ρ
d~u

dt
= −~∇p+ ~∇ · τ + ρ~g

where (Newtonian Viscous fluid)

τij = µ

[
∂uj
∂xi

+
∂ui
∂xj

]
− 2

3
µ
(
~∇ · ~u

)
δij

(τ is the viscous shear stress tensor)

For an inviscid fluid, we have the Euler’s equation:

ρ
d~u

dt
= ρ

(
∂~u

∂t
+
(
~u · ~∇

)
~u

)
= −~∇p+ ρ~g

Conservation of Energy

• ~Bsys = Esys

• b = e

The differential form of the energy e.g.

ρ
dû

dt
+ p~∇ · ~u = Φ + ~∇ ·

(
k~∇τ

)
+ gH

where Φ is the dissipation function and gH is the heat sources other than conduction (e.g.
radiation, chemical reactions) and û is the internal energy per unit mass.

For an inviscid fluid flow without any heat sources, heat conduction and radiation, the
energy equation can be deduced to

ρ
dû

dt
+ p~∇ · ~u = 0

Assuming perfect gas adiabatic

p = ρRT, p/ργ = constant

where γ = cp/cV and û = cV T

The energy equation can be then written as

dp

dt
+ γp~∇ · ~u = 0 or

dρ

dt
+ ρ~∇ · ~u = 0 ∗

∗ The energy equation is identical to the continuity equation under the above assumptions
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5.1 Introduction of The Acoustic Wave Equation

5.1.1 Terminology

Nomenclature

ρ = instantaneous density at (x, y, z)

ρ0 = equilibrium density at ~x

s = condensation at ~x, where s = ρ/ρ0 − 1

ρ− ρ0 = ρ0s = acoustic density at ~x

p = instantaneous pressure at ~x

p0 = equilibrium pressure at ~x

p′ = acoustic pressure at ~x, where p′ = p− p0

c = thermodynamic speed of sound of the fluid.

The Equation of state:

p = ρRT (T in Kelvin)

with the gas constant R = 287 J/kgK for air.

For an isentropic process, we have

p/p0 = (ρ/ρ0)γ , γ = cp/cV

where γ is the ration of specific heats.

For fluids other than a perfect gas, the isentropic relation between pressure and density
fluctuations is determined preferably by experiments.

The relationship can also be expressed by a Taylor series expansion around the equilibrium
state

p = p0 +
(
∂p
∂ρ

)
ρ0

(ρ− ρ0) + 1
2

(
∂2p
∂ρ2

)
(ρ− ρ0)2

p− p0 ≈
(
∂p
∂ρ

)
ρ0

(ρ− ρ0)

⇒ p′ ≈ ρ0

(
∂p
∂ρ

)
ρ0

[
ρ
ρ0
− 1
]

⇒ p′ ≈ Bs

where B = ρ0

(
∂p
∂ρ

)
ρ0

is the adiabatic bulk modulus.

The thermodynamic speed of sound is defined by

c2 = B
ρ0

=
(
∂p
∂ρ

)
ρ0

When a sound wave propagates through a perfect gas with adiabatic condition(
∂p
∂ρ

)
adiabat

= ∂
∂ρ

[
p0

(
ρ
ρ0

)γ]
= γp0

(
ρ
ρ0

)γ
1
ρ

= γ p
ρ

= γRT

c2 = γRT

It is also noted for an incompressible fluid, we have c→∞.
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5.1.2 Acoustic Field Equations

Since the disturbances associated with a sound wave are small and the propagation of
a sound wave is nearly isentropic, the modeling of acoustic field can be based on the
linearized governing equations with neglecting viscosity, heat condition and radiation (for
a perfect gas).

Continuity: ∂ρ
∂t

+ ~∇ · (ρ~u) = 0

Momentum: ρd~u
dt

= −∇p or ρ
[
∂~u
∂t

+
(
~u · ~∇

)
~u
]

= −∇p

Energy: dp
dt

+ γp~∇ · ~u = 0

Consider the small disturbances

ρ = ρ0 + ρ′

p = p0 + p′

~u = ~u0 + ~u′

with ρ0, p0 and ~u0 constant in time and ρ0 and p0 constant in space.

After neglecting the second and higher order terms, the resulting acoustic field equations
are given as the following:

∂ρ′

∂t
+ ρ0

~∇ · ~u′ + ρ0
~∇ · ~u0 + ρ′~∇ · ~u0 +

(
~u0 · ~∇

)
ρ′ = 0

∂ ~u′

∂t
+
(
~u0 · ~∇

)
~u′ +

(
~u′ · ~∇

)
~u0 + ρ0+ρ′

ρ0

(
~u0 · ~∇

)
~u0 = −∇p′

ρ0

∂p′

∂t
+
(
~u0 · ~∇

)
p′ + γp0

~∇ · ~u0 + γp′~∇ · ~u0 + γp0
~∇ · ~u′ = 0

The above three equations are called acoustic continuity, momentum and energy equations
(or acoustic field equations). It can be shown easily that the above equations will remain
unchanged in a non-dimensional form if the characteristic variables are given as follows
(r=reference state):

ρ→ ρr

~u→ ~cr (speed of sound)

p→ ρrc
2
r

t→ L/cr (L is the reference length)

If there is no mean flow (~u0 = 0) the acoustic field equations are

1. ∂ρ′

∂t
+ ρ0

~∇ · ~u′ = 0

2. ∂ ~u′

∂t
+ 1

ρ0
∇p′ = 0

3. ∂p′

∂t
+ γp0

(
~∇ · ~u′

)
= 0

Using the isentropic relation p′ = c2ρ′ one can show that Eq (1.) and Eq (3.) are
identical. Thus there exists an algebraic relation between pressure and density which
results in timesaving computation. This is true if the average flow is constant or for a
potential flow and if the disturbances are adiabatic (like in acoustics). In general in the
linearized energie equation is an non-isentropic relation between pressure and density (p
is independet of ρ)
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Taking the time derivative of Eq (3.)

∂2p′

∂t2
+ γp0

∂
∂t

(
~∇ · ~u′

)
= 0

and subtracting γp0∇·Eq (2.)

−γp0

[
~∇ ·
(
∂ ~u′

∂t

)
+ 1

ρ0

(
~∇ · ~∇

)
p′
]

= 0

we then have

∂2p′

∂t2
= c2

0

(
∂2p′

∂x2 + ∂2p′

∂y2 + ∂2p′

∂z2

)
or

∂2p′

∂t2
= c2

0∆p′

the standard second-order scalar wave equation or the linear wave equation. The wave
equation holds true for ρ′, τ ′ and ~∇ · ~u, given the assumption that the ambient medium
is homogeneous and quiescent.

Introducing ~u = ∇Φ (velocity potential) with ∇× ~u′ = 0 and ∇×~u0 = 0, it can be proved
that

∂2Φ
∂t

= c2
0∇2Φ

However, the potential equation only describes the acoustics and not moving vortices
(∇× ~u′ 6= 0) or non-isentropic disturbances (s′ 6= 0).

5.1.3 Harmonic Plane Waves

Discussions will be restricted to 1)homogeneous, 2)isentropic fluids and 3)speed of sound c
is a constant throughout.

Definition of plane waves:
All acoustic field qualities vary with time and with some Cartesian coordinate s only and
these quantities are independent of position along plane normal to the s-direction.

Therefore we have

p = p (s, t)

~u = u (s, t)~n

where ~n is the unit vector in the directions of s.

For a plane wave traveling in an arbitrary direction a solution can be written as

p = Aei(ωt−kxx−kyy−kzz)

Substitution the solution into the wave equation

∂2p

∂t2
= c2∇2p

we have magnitude (ω
c

)2

= k2
x + k2

y + k2
z or k =

ω

c
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Define the wave propagation vector ~k.

~k = kxx̂+ kyŷ + kz ẑ

with a position vector ~r = xx̂+ yŷ+ zẑ we have p = Aei(ωt−
~k·~r) The surfaces of constant

phase are given by ~k · ~r = constant. As a special case, we are going to examine a plane
wave whose surfaces of constant phase are parallel to the z-axis.

p = Aei(ωt−kxx−kyy)

The surfaces of constant phase are given by

kxx+ kyy = constant
or

y = −
(
kx
ky

)
x = constant.

which describes plane surfaces parallel to the z-axis with a slope of −kx
ky

in the x = y

plane. The vector ~k is perpendicular to the z-axis.

~k = kx cosϕx̂+ ky sinϕŷ

~k points in the direction of propagation.

The magnitude of ~k is the wave number k and kx
k

= cosϕ, ky
k

= sinϕ. The wave length λ
is defined as (wavelength is distance sound travels in once cycle)

λ =
2π

k

since we have k = ω
c

and ω = 2πf

f =
ω

2π
- ω is the angular frequency
- f is the number of cycles per unit time (frequency)
- the units of frequency are hertz (Hz), where 1Hz equals 1 cycle per second

The wave length can be derived as

λ =
2π

k
=

2πc

ω
=
c

f

λf = c

The speed of sound in air is approximately 340m/s. The wavelength corresponding to a
frequency of 262Hz (middle C on the piano) is 1, 3m. Therefore typical sound wavelengths
are neither too long more too short considering the human dimensions. Frequencies au-
dible to a normal human ear are roughly between 20 to 20000Hz.

f = 20Hz → λ = 17m
f = 20000Hz → λ = 0.017m

A young person can detect pressure as low as about 20µPa compared to the normal
atmospheric pressure (101, 3 × 103Pa) around which it varies, a fractional variation of
2× 10−10.
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6 Finite Difference Solution of the Linearized Euler

Equations

6.1 The conservative form of a PDE

Definition:
The coefficients of the derivatives are either constant or, if variable, their derivatives
don’t appear anywhere in the equation. For example, the conservation of mass for steady
two-dimensional flow is written in a conservative form as

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0 (6.1)

and is written in a non-conservative form as

ρ
∂u

∂x
+ ρ

∂v

∂y
+ u

∂ρ

∂x
+ v

∂ρ

∂y
= 0 (6.2)

6.2 The conservative form of the Euler Equations

∂Q

∂t
+
∂E

∂x
+
∂F

∂y
+
∂G

∂z
= 0 (6.3)

where

Q =


ρ
ρu
ρv
ρw
ρet

 , E =


ρu

ρu2 + p
ρuv
ρuw

(ρet + p)u

 , F =


ρv
ρvu

ρv2 + ρ
ρvw

(ρet + p) v

 , G =


ρw
ρwu
ρwv

ρw2 + p
(ρet + p)w


and

et = e+
1

2

(
u2 + v2 + w2

)
Consider small amplitude disturbances superimposed on a uniform mean flow with density
ρ0, pressure p0 and velocity u0 in the x-direction only. The linearized Euler equations for
two-dimensional disturbances are (assuming p = ρRT and p/ργ = constant)

∂Q

∂t
+
∂E

∂x
+
∂F

∂y
= H (6.4)

where

Q =


ρ′

u′

v′

p′

 , E =


ρ0u

′ + ρ′u0

u0u
′ + p′/ρ0

u0v
′

u0p
′ + γp0u

′

 , F =


ρ0v
′

0
p′/ρ0

γp0v
′


The non-homogeneous term H represents sources. Equation (6.4) can also be written as

∂Q

∂t
+
∂E

∂Q

∂Q

∂x
+
∂F

∂Q

∂Q

∂y
= H

Therefore

→ ∂Q

∂t
+


u0 ρ0 0 0
0 u0 0 1

ρ0

0 0 u0 0
0 γp0 0 u0

 ∂Q∂x +


0 0 ρ0 0
0 0 0 0
0 0 0 1

ρ0

0 0 γp0 0

 ∂Q∂y = H (6.5)
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6.3 Wave Decomposition

The Fourier-Laplace transform of a function f (x, y, t) and its inverse are defined as

f̃(α, β, ω) =
1

(2π)3

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

f (x, y, t) e−i(αx+βy−ωt)dxdydt

f(x, y, t) =

∫
Γ

∫ ∞
−∞

∫ ∞
−∞

f̃(α, β, ω)ei(αx+βy−ωt)dαdβdω

The contour Γ is a line parallel to the real axis in the complex ω-plane above all poles
and singularities of the integrand.

Figure 6.1: upper ω̂ half plane (Tam and Auriault [1])

The general initial value problem can be solved

1

2π

∫ ∞
0

∂u

∂t
eiωtdt = − 1

2π
uinitial − iωũ

Therefore the Fourier-Laplace transform of equation (6.5) can be written as

AQ̃ = i

(
H̃ +

Qinitial

2π

)
(6.6)

where

A =


ω − αu0 −ρ0α −ρ0β 0

0 ω − αu0 0 −α/ρ0

0 0 ω − αu0 −β/ρ0

0 −γp0α −γp0β ω − αu0



Details
————————————————————————

∂ρ̃
∂t

+ u0
∂ρ̃
∂x

+ ρ0
∂ũ
∂x

+ ρ0
∂ṽ
∂y

= H̃1

→ − 1
2π
ρinitial − iωρ̃+ u0iαρ̃+ ρ0iαũ+ ρ0iβυ̃ = H̃1

−i [(ω − αu0) ρ̃− ρ0αũ− ρ0βυ̃] = 1
2π
ρinitial + H̃1

(ω − αu0) ρ̃− ρ0αũ− ρ0βυ̃ = i
(
H̃1 + ρinitial

2π

)
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The eigenvalues λj and eigenvectors ~xj (j = 1, 2, 3, 4) of matrix A are A~x = λ~x
⇒ det (A− λIn) = 0. We have

λ1 = λ2 = (ω − αu0)

λ3 = (ω − αu0) + c0

(
α2 + β2

) 1
2

λ4 = (ω − αu0)− c0

(
α2 + β2

) 1
2

where c0 =
√
γ p0

ρ0
is the speed of sound. The eigenvectors are

~x1 =


1
0
0
0

 , ~x2 =


0
β
−α
0

 , ~x3 =


1
c20−α

ρ0c0
√
α2+β2

−β
ρ0c0
√
α2+β2

1

 , ~x4 =


1
c20
α

ρ0c0
√
α2+β2

β

ρ0c0
√
α2+β2

1


Equation (6.6) can be written as

AQ̃ = T̃ where T̃ = i

(
H̃ +

Qinitial

2π

)
Since the matrix A can be diagonalized and written as

A = XΛX−1

We then have
XΛX−1Q̃ = T̃

where X and Λ are eigenvector matrix and eigenvalue matrix.

x = [x1x2x3x4]

Λ =


λ1

λ2

λ3

λ4


⇒ Q̃ =

c1

λ1

~x1 +
c2

λ2

~x2 +
c3

λ3

~x3 +
c4

λ4

~x4 (6.7)

where ~c is a coefficient vector and is given by

~c = x−1T̃

Equation (6.7) represents the decomposition of the solution into the entropy wave ~x1, the
vorticity wave ~x2, and two modes of acoustic waves, ~x3 and ~x4.

Details
————————————————————————

XΛX−1Q̃ = T̃

X−1XΛX−1Q̃ = X−1T̃

ΛX−1Q̃ = ~c

Λ−1ΛX−1Q̃ = Λ−1~c

X−1Q̃ =


1
λ1

1
λ2

1
λ3

1
λ4



c1

c2

c3

c4

 =


c1
λ1
c2
λ2
c3
λ3
c4
λ4

⇒ Q̃ = X


c1
λ1
c2
λ2
c3
λ3
c4
λ4

 = [~x1~x2~x3~x4]


c1
λ1
c2
λ2
c3
λ3
c4
λ4


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6.4 Definitions

1. The entropy wave: it consists of density fluctuations alone. i.e., u′ = v′ = p′ = 0
2. The vorticity wave: it consists of velocity fluctuations alone. i.e., p′ = ρ′ = 0

(no pressure and density fluctuations associated
with this wave mode)

3. The acoustic wave: it involves fluctuations of all the physical variables

initial condition: pressure later

initial condition: density later

1. homogeneous medium: any mean flow values are independent of ~x
waves propagate relatively to the constant flow

2. homentropic medium: (potential flow)
entropy, vorticity and acoustic modes coupled through mean flow

3. quiescent medium: homentropic and homogeneous, ~u0 = 0
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6.5 Propagation Speeds of the Waves

6.5.1 The Entropy Wave

ρ̃ =
c1

λ1

By the inverse Fourier-Laplace transform,

ρ′(x, y, t) =

∫
Γ

∫ ∞
−∞

∫ ∞
−∞

∫
c1

(ω − αu0)
e−i(αx+βy−ωt)dαdβdω (6.8)

If ω − αu0 = 0 (zero of the denominator), equation (6.8) gives rise to a pole of the
integrand. The dispersion relation arising from this zero is

λ1 = (ω − αu0) = 0

In the α-plane, the zero of equation (6.8) is given by

α =
ω

u0

Using the residue theorem and Jordan’s Lemma, the α-integral of equation (6.8) can be
evaluated and we have

ρ′ (x, y, t) =

2πi
∫

Γ

∫
β
c1e

i( x
u0
−t)ω+iβy

u0
dωdβ x→∞

0 x→ −∞
(6.9)

or

ρ′ (x, y, t) =

{
f (x− u0t, y) x→∞
0 x→ −∞

The entropy wave is convected downstream at the mean flow speed!

6.5.2 The Vorticity Wave

By applying the inverse Fourier-Laplace transforms, we have[
u′

v′

]
=

∫
Γ

∫ ∞
−∞

∫ ∞
−∞

[
β
−α

]
c2

(ω − αu0)
ei(αx+βy−ωt)dαdβdω

The dispersion relation is
λ2 = ω − αu0 = 0.

Let

ψ (x, y, t) =

∫
Γ

∫ ∞
−∞

∫ ∞
−∞

−ic2

(ω − αu0)
ei(αx+βy−ωt)dαdβdω (6.10)

then

u′ =
∂ψ

∂y
and v′ = −∂ψ

∂y
.

Equation (6.10) can be evaluated in the same way as equation (6.8). This gives us

ψ (x, y, t) =

{
ψ (x− u0t, y) x→∞
0 x→ −∞

(6.11)

Like the entropy wave, the vorticity wave is convected downstream as at the mean flow
speed.
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6.5.3 The Acoustic Wave

The acoustic waves involve fluctuations in all the physical variables. The dispersion rela-
tion is given by

λ3λ4 = (ω − au0)2 − c2
0

(
α2 + β2

)
= 0.

Applying the inverse Fourier-Laplace transforms and following a similar procedure as
before, we have the asymptotic solution (r →∞)

ρ′

u′

v′

p′

 ∼ F
(

r
V (θ)
− t, θ

)
√
r

·


1
c20
û(θ)
ρ0c0
v̂(θ)
ρ0c0

1

+O
(√

r
)

(6.12)

where V (θ) is the effective velocity of propagation in the θ-direction, and (r, θ) are the
polar coordinates and

V (θ) = u0 cos θ + c0

√
1−M2 sin2 θ M =

u0

c0

û (θ) =
cos θ −M

√
1−M2 sin2 θ√

1−M2 sin2 θ
−M cos θ V̂ (θ) = sin θ

[√
1−M2 sin2 θ +M cos θ

]
6.5.4 Another Approach on Wave Decomposition

(In time domain, one-dimensional uniform flow) The Euler equation can be written as

∂ ~Q

∂t
+ A0

∂ ~Q

∂x
= 0 (6.13)

where

~Q =

 ρ′

u′

p′

 and A0 =

 u0 ρ0 0
0 u0

1
ρ0

0 γp u0


The matrix A0 can be diagonalized as

A0 = TΛT−1 =

 1 ρ0√
2c0

ρ0√
2c0

0 1√
2
− 1√

2

0 ρ0c0√
2

ρ0c0√
2


 u0 0 0

0 u0 + c0 0
0 0 u0 − c0


 1 0 − 1

c20

0 1√
2

1√
2ρ0c0

0 − 1√
2

1√
2ρ0c0


We can project the disturbance vector ~Q on the three independent eigenvectors and write

~Q = s1~x1 + s2~x2 + s3~x3 (6.14)

where s1, s2 and s3 are the three projections in the three directions.

Substitute equation (6.14) into equation (6.13) and consider

A0
∂ ~Q

∂x
= A0

∂s1 ~x1

∂x
+ A0

∂s2 ~x2

∂x
+ A0

∂s3 ~x3

∂x

=
∂s1λ1 ~x1

∂x
+
∂s2λ2 ~x2

∂x
+
∂s3λ3 ~x3

∂x
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we have

∂

∂t
(s1 ~x1) +λ1

∂
∂x

(s1 ~x1) +

∂

∂t
(s2 ~x2) +λ2

∂
∂x

(s2 ~x2) +

∂

∂t
(s3 ~x3) +λ3

∂
∂x

(s3 ~x3) = 0

where λ1 = u0, λ2 = u0 + c0, λ3 = u0 + c0.

Therefore the disturbance vector is decomposed into three vectors what are propagating
with speeds of u0, u0 + c0 and u0 − c0, respectively. As it is shown that the entropy wave
is traveling with the flow, and the acoustic waves are propagating with the speed of sound
relative to the flow. Similar analogy can be made to the eigenvalues and eigenvectors of
the Jacobian matrix (A0) in multi-dimension.

6.5.5 Yet another Approach: solution modes by Kovasznay

The acoustic, entropy and vorticity modes are decoupled in terms of linearization. How-
ever, they are coupled of first order in non-constant flows.

Entropy Mode Consider a constant flow in x-direction (~u0 = u0). The energy equation
can then be written as

∂s

∂t
+ ~u · ~∇s = ~0

Linearizataion (s = s0 + s′) leads to

∂(s0 + s′)

∂t
+ (~u0 + ~u′) · ~∇(s0 + s′) = ~0

and with s0 being constant in time and space

~0 =
∂s′

∂t
+ ~u0 · ~∇s′ +O(~u′s′) ≈ Ds′

Dt
(6.15)

In 1D, the approach s′ = f(x− u0t) satisfies this equation. This means, that the entropy
mode behaves like acoustic waves (the shape of the entropy wave remains constant) but
with a propagation speed of u0 instead of c0.

s'

x

t0 t1

x0

u0

x1=x0+u0(t1-t0)

Figure 6.2: propagation of an entropy wave in 1D
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In 2D, the approach s′ = f(x− u0t, y) satisfies equation (6.15).

y

x

y0

x0

y

x

y0

x1

u0

u0

t0 t1

Figure 6.3: propagation of an entropy wave in 2D

Thus, the hot-spot propagates - different from acoustic waves - only in direction of the
mean flow. The entropy wave can be “switched off” by using the isentropic relation
p′ = c2ρ′ instead of solving Ds′

Dt
.

Vorticity Mode The momentum equation with ~u0, ρ0 = const. is

∂~u′

∂t
+ ~u0 · ~∇~u′ +

1

ρ0

~∇p′ = 0

By applying rotation to this equation one gets

∂~∇× ~u′

∂t
+∇× (~u0 · ~∇~u′) +

1

ρ0

~∇× (~∇p′) = 0

and with ~∇ × ~∇ = rotgrad = 0 as well as ~u0 · ~∇~u′ = ~∇(~u0 · ~u′) − ~u0 × (~∇ × ~u′) and
~Ω′ = ~∇× ~u′

∂ ~Ω′

∂t
+ ~∇× ~∇(~u0 · ~u′)︸ ︷︷ ︸

=0

−~∇× (~u0 × ~Ω′) = 0

Using the transformation ~a× (~b× ~c) = ~b(~a · ~c)− ~c(~a ·~b) on the last term leads to

~∇× (~u0 × ~Ω′) = ~u0(~∇ · ~Ω′)− ~Ω′ (~∇ · ~u0)︸ ︷︷ ︸
=0 for ~u0=const.

⇒ ∂ ~Ω′

∂t
− ~u0

~∇ · ~Ω′ = 0 (6.16)

This equation is similar to the entropy equation (6.15). So, Solutions of equation (6.16)

are ~Ω′ = f(x−~u0t). Vorticity waves are therefore propagating with the speed of the mean
flow ~u0 whereas acoustic waves propagete with ~u0 ± c. As the energy equation describes
the transportation of entropy, the momentum equation describes the transportation of
vortices. These two modes are called hydrodynamic perturbations. The missing acoustic
waves don’t describe the transport of vortices and entropy.
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For an entropy perturbation with a frequency of f = 100Hz and a flow speed of u0 =
10m/s, the wavelength of the entropy wave is

λs =
u0

f
= 0.1m

for f = 1kHz: λs = 0.01m and for f = 10kHz: λs = 0.001m. To resolve these waves, the
grid distance must be at least 0.001m.

Notes

• The hydrodynamic perturbations are not small in terms of acoustics.

• For every frequency: lim
u0→0

~u0 · ~∇s′ = ∞ (similar for ~Ω′). Therefore, linearization is

limited reasonable. Non-linear interaction of 2nd order are to be expected. Leaving
out the hydrodynamic perturbations is preferable. In practice, only some terms are
masked like ∂u′

∂y
or ∂v′

∂x
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7 Solve the Linearized Euler Equation using DRP

Schemes

The linearized Euler equation (two-dimension)

∂Q

∂t
+
∂E

∂x
+
∂F

∂y
= H (7.1)

Where

Q =


ρ′

u′

v′

p′

 , E =


ρ0u

′ + ρ′u0

u0u
′ + p′/ρ0

u0v
′

u0p
′ + γp0u

′

 , F =


ρ0v
′

0
p′/ρ0

γp0v
′


Rewrite the equation (7.1) in the form, we have

I : K = −∂E
∂x
− ∂F

∂y
+H (7.2)

II : ∂Q
∂t

= K (7.3)

Using the 4th-order 7-point optimized central finite difference scheme for the spatial dis-
cretization and the 3rd-order 4 level optimized time marching scheme, the finite difference
equation can be written as

I : K
(n)
l,m = − 1

∆x

3∑
j=−3

ajE
(n)
l+j,m − 1

∆y

3∑
j=−3

ajF
(n)
l,m+j +H

(n)
l,m (7.4)

II : Q
(n+1)
l,m = Q

(n)
l,m + ∆t

3∑
j=0

bjK
(n−j)
l,m (7.5)

where l, m and n are the x, y, t indices and ∆x, ∆y, ∆t are the mesh sizes and the time
step. To reduce numerical truncation errors, it’s best practice to first summarize the small
coefficients (a±3, b−3) and afterwards the bigger ones (a±1, b0).

From the initial conditions
Q (x, y, 0) = Qinitial (x, y)

we have
Q

(0)
l,m = Qinitial

How about Q
(n)
l,m for negative values of n (n = −1, −2 and −3)?

We will show later that the proper values for Q
(n)
l,m are

Q
(n)
l,m = 0 for negative values of n

Therefore, for n < 0 set either K
(n)
l,m = 0 or K

(n)
l,m = K

(0.)
l,m

54



7.1 Question

Will the numerical scheme (equations (7.4) and (7.5)) give the same dispersion relations
as the original partial differential equations (equations (7.2) and (7.3))?
In order to answer this question, we need to apply the Fourier-Laplace transforms to the
finite difference equations with continuous variables:

K (x, y, t) = − 1

∆x

3∑
j=−3

ajE (x+ j∆x, y, t)− 1

∆y

3∑
j=−3

ajF (x, y + j∆y, t) +H (x, y, t)

(7.6)

Q (x, y, t+ ∆t) = Q (x, y, t) + ∆t
3∑
j=0

bjK (x, y, t− j∆t) (7.7)

Q (x, y, t) =

{
Qinitial (x, y) 0 ≤ t < ∆t

0 t < 0
(7.8)

Applying the Fourier-Laplace transforms to equations (7.6) and (7.7) with initial condi-
tions, equation (7.8), and using the shifting theorems for Laplace transform

∆ > 0

1

2π

∫ ∞
0

f (t+ ∆) eiωtdt = e−iω∆f̃ (w)−
(

1

2π

∫ ∆

0

f (t) eiωtdt

)
e−iω∆

1

2π

∫ ∞
0

f (t−∆) eiωtdt = eiω∆f̃ (w) +

(
1

2π

∫ 0

−∆

f (t) eiωtdt

)
eiω∆

we have

K̃ = − 1

∆x

[
3∑

j=−3

aje
ijα∆x

]
Ẽ − 1

∆y

[
3∑

j=−3

aje
ijβ∆y

]
F̃ + H̃

Define:

α =
−i
∆x

3∑
j=−3

aje
ijα∆x

β =
−i
∆y

3∑
j=−3

aje
ijβ∆y

We have
K̃ = −iαẼ − iβF̃ + H̃ (7.9)

and

e−iω∆tQ̃− 1

2π

(∫ ∆t

0

Qinitiale
iωtdt

)
e−iω∆t

= Q̃+ ∆t
3∑
j=0

bj

K̃eiωj∆t +
1

2π

(∫ 0

−∆t

K (x, y, t) eiωtdt

)
︸ ︷︷ ︸

=0, because K∈[−∆t;0]=0

e−iω∆t

 (7.10)
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Equation (7.10) can be rearranged as

(
e−iω∆t − 1

)
Q̃ = ∆t

3∑
j=0

bje
iωj∆tK̃ +

e−iω∆t

2π

(∫ ∆t

0

Qinitiale
iωtdt

)

⇒
(
e−iω∆t − 1

)
Q̃ = ∆t

3∑
j=0

bje
iωj∆tK̃ +

e−iω∆t

2π
Qinitial

eiωt

iω

∣∣∣∣∆t
0

⇒
(
e−iω∆t − 1

)
Q̃ = ∆t

3∑
j=0

bje
iωj∆tK̃ +

Qinitial

2πiω

(
1− e−iω∆t

)
Define ω =

i(e−iω∆t−1)

∆t
3P
j=0

bjeiωj∆t

We have
ωQ̃

i
= K̃ +

Qinitial

2πω
ω

⇒ −iωQ̃ = K̃ + Qinitial

2π
ω
ω

(7.11)

We now have
K̃ = −iαẼ − iβF̃ + H̃ (7.12)

− iωQ̃ = K̃ +
Qinitial

2π

ω

ω
(7.13)

Eliminate K̃

⇒ −iωQ̃ = −iαẼ − iβF̃ + H̃ +
Qinitial

2π

ω

ω

⇒ −i
(
ωQ̃− αẼ − βF̃

)
= H̃ +

Qinitial

2π

ω

ω

⇒
(
ωQ̃− αẼ − βF̃

)
= i

[
H̃ +

Qinitial

2π

ω

ω

]
⇒ AQ̃ = T̃ T̃ = i

[
H̃ +

Qinitial

2π

ω

ω

]
where

A =


ω − αu0 −ρ0α −ρ0β 0

0 ω − αu0 0 −α/ρ0

0 0 ω − αu0 −β/ρ0

0 −γp0α −γp0β ω − αu0


Replacing α, β, ω in the matrix A (discussed in lecture 6) by α, β, ω, the above analysis
shows that the Fourier-Laplace transform of the DRP scheme is the same as the Fourier-
Laplace transform of the original partial differential equations. Therefore the two systems
must have the same dispersion relations.
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7.2 Numerical Stability Requirement (CFL- number)

For entropy and vorticity waves, the dispersion relation is

ω − αu0 = 0

⇒ ω∆t = αu0∆t

From the plot α∆x vs. α∆x (figure on page 32), we can see that for any values of α (or
β), the following inequalities hold true

α∆x < 1.7
(
β∆y < 1.7

)
⇒ ω∆t ≤ 1.7∆t

∆x
u0

Since the stability analysis for the time discretization shows that ω∆t < 0.4 is required
for stability. This can be shown by a figure ω∆t vs. ω∆t, similar to α∆x vs. α∆x. We
then have with the Mach number M and the sound of speed c0

ω∆tmax =
1.7∆tmax

∆x
u0

⇒ 0.4 =
1.7∆tmax

∆x
u0

⇒ ∆tmax =
0.4

1.7
· ∆x

u0

=
0.4

1.7
· ∆x

M · c0

⇒ ∆t ≤ 0.235

M
· ∆x

c0

Thus, the Courant-Friedrichs-Lewy number (CFL) is

∆t

∆x
c0 ≤

0.235

M

For acoustic waves, the dispersion relation is

ω = αu0 + c0

√
α2 + β

2

and we have

α∆x, β∆y < 1.7

ω∆t < 0.4

The maximum time step is then given by

∆tmax = 0.4

1.7

 
M+

r
1+(∆x

∆y )
2

! ∆x
c0

∆t ≤ 0.235

M+

r
1+(∆x

∆y )
2

∆x
c0
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7.3 Numerical Accuracy Consideration

(a) The group velocity consideration

dα

dα
≤ 1± 0.003⇒ α∆x < 0.9

(reasonably accurate prediction for group velocity with an error of ±0.3 %)

(b) Consideration of the numerical damping in the time discretization

ω∆t ≤ 0.19

∆t ≤ 0.211

M+

r
1+(∆x

∆y )
2
· ∆x
c0

based on accuracy consideration

and
∆t ≤ 0.235

M+

r
1+(∆x

∆y )
2
· ∆x
c0

based on stability consideration

The requirement for numerical accuracy is slightly more stringent than that for numerical
stability.

7.4 Group Velocity

The dispersion relation in general is ω = ω (α, β). The group velocity is therefore expressed
as

~vgr =
∂ω

∂α
êx +

∂ω

∂β
êy

For the entropy and the vorticity waves, the dispersion relation is ω = u0α.

⇒ ∂ω

∂α
= u0

∂ω

∂β
= 0.

Hence
~vgr = u0êx

The wave is convected downstream at the speed of the mean flow.

For the acoustic waves, the dispersion relations

ω = αu0 ± c0

√
α2 + β2

~vgr =

[
u0 ±

αc0√
α2 + β2

]
êx ±

βc0√
α2 + β2

êy

For waves propagating in the x-direction (β = 0), we have

~vgr = (u0 ± c0)êx
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7.5 Group Velocity for DRP Schemes

~vgr,DRP =
∂ω

∂α
êx +

∂ω

∂α
êy

=
∂ω

∂ω

∂ω

∂α

∂α

∂α
êx +

∂ω

∂ω

∂ω

∂β

∂β

∂β
êy

=
∂ω
∂α

dα
dα

dω
dω

êx +

∂ω
∂β

dβ
dβ

dω
dω

êy

The dispersion relation for acoustic waves is

ω = u0α± c0

√
α2 + β

2

⇒ ~vgr,DRP =

[
u0 ± c0α√

α2+β
2

]
dα
dα

dω
dω

êx +

[
± c0β√

α2+β
2

]
dβ
dβ

dω
dω

êy

For waves propagating in the x-direction (β = β = 0)

~vgr,DRP =
(u0 ± c0) dα

dα
dω
dω

êx

Compared to the analytical group velocity, an error is introduced by the DRP with dα
dα

and dω
dω

. As seen before, the requirements on the numerical method for correct predictions
are

dα

dα
=

d(α∆x)

d(α∆x)
= 1

dω

dω
=

d(ω∆t)

d(ω∆t)
= 1

For the entropy and the vorticity waves, the dispersion relation is

ω = u0α

⇒ ~vgr,DRP =
u0

dα
dα

dω
dω

êx
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8 The Short Wave Component of Finite Difference

Schemes

Consider the initial value problem associated with the linearized Euler equations in one
dimension without mean flow.

The dimensionless linearized momentum equations is obtained by using normalized vari-
ables:

u′ = U · c∞ x = X ·R
p′ = P · ρ0 · c2

∞ ρ0 = %0 · ρ∞

t = T
R

c2
∞

with R being a specific length

Applied to the linarized momentum equation

ρ0
∂u′

∂t
+
∂p′

∂x
= 0

we have

%0
∂U

∂T

ρ∞c
2
∞

R
+
∂P

∂X

ρ0c
2
∞

R
= 0

and with %0 = 1 or ρ0 = ρ∞ we have the dimensionless linearized momentum equation

∂U

∂T
+
∂P

∂X
= 0 (8.1)

In the same manner we get the dimensionless linearized energy equation

∂P

∂T
+
∂U

∂X
= 0 (8.2)

With the initial conditions

U(t = 0, x) = 0 P (t = 0, x) = f(x)

the exact solution is a plane wave

P (x, t) =
1

2
[f(x− t) + f(x+ t)]

Consider the Gaussian function
f(x) = e−ax

2

with its Fourier transform

f̃(α) =
1√
2a
e−

α2

4a

The half width of the Gaussian function f(x) is√
ln 2

a
= ω

a =
ln 2

d
d = 25, 9, 4, 1, 0.04 (eg.)
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On discretizing (8.1) and (8.2) using the 7-point-stencil DRP scheme with ∆x = 1

E
(n)
l = −

3∑
j=−3

ajP
(n)
l+j

F
(n)
l = −

3∑
j=−3

ajU
(n)
l+j

U
(n+1)
l = U

(n)
l + ∆t

3∑
j=−3

bjE
(n−j)
l

P
(n+1)
l = P

(n)
l + ∆t

3∑
j=0

bjF
(n−j)
l

The initial conditions are

U
(n)
l = 0 n ≤ 0

P
(n)
l =

{
e−ax

2
l n = 0

0 n < 0

The numerical solutions for d = 25.9 are given at t = 200∆t, 2000∆t and 4000∆t (with
∆t = 0.1) and for d = 4, 1 and 0.04 at t = 200∆t. As we can see the numerical solutions
deviated as the value of ω decreases. If we take a look at the plot dα

dα
vs. α∆x the group

velocity for the short wave is less than 1. The high wavenumber components have negative
group velocity. We define dispersive waves and parasite waves to distinguish the short
waves with positive and negative group velocity.

dα

dα
=


1.0 α ≤ 1.2

dispersive waves 1.2 ≤ α ≤ 2.0

parasite waves 2.0 ≤ α ≤ π

0 0,5 1
α ∆x [xπ]
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-0,5

0
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v gr
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 ]
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Figure 8.1: Group velocity of the DRP
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In order to study the wave propagation characteristics of the short waves of the finite
difference schemes, we consider a discontinuous initial condition (rectangle function),

f(x) = H(x+M)−H(x−M)

where M is a large positive number and H(x) is the unit step function or Heaviside
function.

H(x) =


0 x < 0
1
2

x = 0

1 x > 0

The exact solution of such artificial condition is

P (x, t) =
1

2
[H(x− t+M)−H(x− t−M)] +

1

2
[H(x+ t+M)−H(x+ t−M)]

The solution by the numerical scheme (DRP) in physical space and time can be found by
inverting the Fourier-Laplace transform.

Step 1 Write finite difference equations with continuous variables x and t

U(x, t+ ∆t) = U(x, t) + ∆t
3∑

j=−3

bjE(x, t− j∆t)

P (x, t+ ∆t) = P (x, t) + ∆t
3∑

j=−3

bjF (x, t− j∆t)

E(x, t) = −
3∑

j=−3

ajP (x+ j∆x, t)

F (x, t) = −
3∑

j=−3

ajU(x+ j∆x, t)

The initial conditions:

U = 0 t < ∆t

P =

{
H(x+M)−H(x−M) 0 ≤ t ≤ ∆t

0 t < 0

Step 2 Solve the above initial value problem by the Fourier- Laplace transform.

Step 3 The Fourier-Laplace transform of P is given by

p̃ =
i

2π

(
ω2

ω

)
f̃

ω2 − α2

where

f̃ =
1

2π

∫ ∞
−∞

[H(x+M)−H(x−M)] e−iαxdx

f̃ =
sinα M

πα
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Step 4 The solution in physical space and time

P (x, t) =
i

2π

∫
Γ

∫ ∞
−∞

(
ω2

ω

)
f̃

ω2 − α2 e
i(αx−ωt) dαdω

There are two poles at ω(ω) = ±α(α). By the Residual Theorem (t→∞), we have

P (x, t) =
1

2

∫ ∞
−∞

f̃(α) ei(αx−αt)dα

+
1

2

∫ ∞
−∞

f̃(α) ei(αx+αt)dα

Step 5 Evaluation of the solution P (x, t). Divide the integral (the first integral) into
four seperate integrals.

P (x, t) =
1

2

(∫ −π
−∞

+

∫ ∞
π

f̃ ei(αx−αt)dα

)
I1

+
1

2

(∫ −2.0

−π
+

∫ π

2.0

f̃ ei(αx−αt)dα

)
I2

+
1

2

(∫ −1.2

−2.0

+

∫ 2.0

1.2

f̃ ei(αx−αt)dα

)
I3

+
1

2

(∫ 1.2

−1.2

f̃ ei(αx−αt)dα

)
I4

The above four integrals are referred as I1, I2, I3 and I4.
I1: contribution from ultra-short waves. (λ < 2∆x)
I2: contribution from parasite waves
I3: contribution from dispersive waves
I4: contribution from long waves

In order to evaluate these integrals, we need to know α as a function of α. To simplify
the analysis, the graph of the dα

dα
curve is approximated by the analytical formula

dα
dα

=


1.0

1− (α−1.2)2

0.64

−2.75(α− 2.0)

(long waves)
(dispersive waves)
(parasite waves)

α ≤ 1.2
1.2 ≤ α ≤ 2.0
2.0 ≤ α ≤ π

I1: (λ < 2∆x) It is not important to the present discretized solution because the ultra-
short waves are not resolved. Neglected.

I4 =
1

2π

∫ ∞
−∞

[H(y +M)−H(y −M)]
sin[1.2(x− t− y)]

x− y − t
dy

I4 =
1

2π
{Si[1.2(x− t+M)]− Si[1.2(x− t−M)]}

where

Si(x) =

∫ x

0

sin y

y
dy

I2 and I3 can be evaluated for large time by the method of stationary phase.
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The method of stationary phase provides the following formula.

lim
t→∞

∫
g(β)eih(β)tdβ ≈

√
2π

t |h′′(βs)|
g(βs)e

ih(βs)t+i
π
4

sgn(h
′′

(βs))

where
dh(β)

dβ

∣∣∣∣
β=βs

= 0

βs is called the stationary point of the phase function h and sgn the sign of.

I2 and I3 can be written as ∫
f̃(α)ei[α

x
t
−α(α)]t dα

For large t, the phase function is h = αx
t
− α(α).

The stationary point is given by

dh

dα
= 0

→ x

t
=

dα

dα

→ x =
dα

dα
t

dα
dα

is the effective speed of propagation for the wave with wavenumber α.

Parasite waves

I2 ≈
√

0.727

λt

sin
[(

2.0− x
2.75t

)
M
]

2.0− x
2.75t

cos

[(
2x− 1.733t− 0.1818

x2

t

)
+
π

4

]
−3.139t < x < 0

Dispersive waves

I3 ≈
√

0.8

λt

1(
1− x

t

) 1
4

sin
[
1.2 + 0.8

√
1− x

t
M
]

1.2 + 0.8
√

1− x
t

cos

[
(x− t)

(
1.2 + 0.533

√
1− x

t

)
+
π

4

]
0 < x < t
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9 Selective Artificial Damping (SAD)

Purpose of artificial damping: to remove numerical contaminants
of a computed solution.

Important points: 1) Selectively damp out the short waves
2) have minimal effect on the long waves

9.1 Basic concept

∂u′

∂t
+

1

ρ0

∂p′

∂x
= D (x)

↑
Dimensional momentum eq. (no mean flow) of the linearized Euler eqs.
Discretization using 7-point-stencil,

∂ul
∂t

+
1

ρ0

1

∆x

3∑
j=−3

ajpl+j = Dl

9.2 Assumption

Dl is proportional to the value of ul within the stencil.

dul
dt

+
1

ρ0

1

∆x

3∑
j=−3

ajpl+j = − v

(∆x)2

3∑
j=−3

djul+j (9.1)

Where dj are the weight coefficients, v is the artificial kinetic viscosity.[
v

(∆x)2

]
=

[
1

time

]
dj’s are pure numbers.

9.3 Approach

Choose dj so that the artificial damping would be effective mainly for high wavenumber
or short waves. The Fourier transform of the continuous form of eq. (9.1)

dũ

dt
+ . . . = − v

(∆x)2

3∑
j=−3

dje
ijα∆x ũ

↑
If neglecting the terms not shown here, the solution is

ũ ∼ e
−i v

(∆x)2
D̃(α∆x) t

where

D̃ (α∆x) =
3∑

j=−3

dje
ijα∆x
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Three conditions on D̃ (α∆x).

(a) D̃ (α∆x) should be a positive even function of α∆x.

dj = d−j

→ D̃ (α∆x) = d0 + 2
3∑
j−1

dj cos [jα∆x]

(b) There should be no damping for long waves.

D̃ (α∆x)→ 0 as α∆x→ 0

This requires

d0 + 2
3∑
j−1

dj = 0 (9.2)

(c) For convenience, D̃ (α∆x) is normalized so that

D̃ (π) = 1 (9.3)

D̃ (α∆x) = d0 + 2 [d1 cosα∆x+ d2 cos 2α∆x+ d3 cos 3α∆x]

We would like to have the properties:

D̃ (α∆x) small for small α∆x

but large D̃ (α∆x) when α∆x→ π

Take a Gaussian function centered at π with half-width σ

f (α∆x) = e−ln 2(α∆x−π
σ )

2

when α∆x = π: f (α∆x) = 1
when α∆x = 0 (or small): f (α∆x)→ 0 (or small)

→ then the weight coefficients dj are determined such that the integral∫ β

0

[
D̃ (α∆x)− e− ln 2(α∆x−π

σ )
2]2

d (α∆x)

is a minimum.

With eqs. (9.2), (9.3) and the above minimization condition, we can determine the coef-
ficients dj. β is a parameter that can be adjusted to yield the most desirable properties
for D̃.

For the discontinuous solution (boxcar problem).

d0 = 0.3276986608

σ = 0.3π d1 = d−1 = −0.235718815

β = 0.65π d2 = d−2 = 0.0891506696

d3 = d−3 = −0.0142811847
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9.4 Numerical Implementation
∂U
∂T
− ∂P

∂X
= 0

∂P
∂T

+ ∂U
∂X

= 0

}
1-d dimensionless Euler eq.
(linearized, no mean flow)

P =

{
H (x+m)−H (x−m) t = 0

0 t < 0

U = 0 t = 0

U
(n+1)
l = U

(n)
l + ∆t

3∑
j=0

bjE
(n−j)
l

P
(n+1)
l = P

(n)
l + ∆t

3∑
j=0

bjF
(n−j)
l

E
(n)
l = −

3∑
j=−3

ajP
(n)
l+j − 1

R

3∑
j=−3

djU
(n)
l+j

F
(n)
l = −

3∑
j=−3

ajU
(n)
l+j − 1

R

3∑
j=−3

djP
(n)
l+j

U
(n)
l = 0 (n ≤ 0)

P
(n)
l =

{
H (xl +M)−H (xl −M) n = 0

0 n < 0

where R = c0∆x
v

is the artificial mesh Reynolds number.
1
R

= 0.3 ⇒ compare the Results.

Background damping:

(a) +0 avoid the generation of parasite waves through discontinuous initial or boundary
conditions

(b) Nonlinearities

(c) Rapid changes at boundary interfaces

Some useful artificial selective damping stencils:

7-point damping stencil (σ = 0.2π)
d0 = 0.2873928425
d1 = d−1 = −0.2261469518
d2 = d−2 = 0.106305788
d3 = d−3 = −0.0238530482

5-point damping stencil (Taylor, not optimized)
d0 = 0.375
d1 = d−1 = −0.25
d2 = d−2 = 0.0625

3-point damping stencil (not optimized)
d0 = 0.5
d1 = d−1 = −0.25
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9.5 Excessive Damping

(a) Excessive damping can cause ”artificial viscous diffusion”.

1
R

= 5

∂u

∂t
+
∂u

∂x
= 0

u (x, 0) = 0, 5e− ln 2(x5 )
2

The Fourier transform of a Gaussian function is also a Gaussian function. Artificial
damping reduces the amplitude of the pulse in the wavenumber space unevenly:

(a) No reduction at zero wave number.

(b) The reduction increases with α increases.

Therefore the pulse becomes narrower in the wavenumber space. This results the
physical waveform spreads out in the physical space.

(b) Excessive damping can cause ”numerical instability”.

1
R

= 15

Why?
∂u
∂t

+ ∂u
∂x

= 0 −∞ < x <∞
u (x, 0) = 0, 5e− ln 2(x5 )

2

The continuous form of the discretized eqs.

u (x, t+ ∆t) = u (x, t) + ∆t
3∑
j−0

bjκ (x, t− j∆t)

κ (x, t) = − 1
∆x

3∑
j=−3

aju (x+ j∆x, t)

− 1
R

3∑
j=−3

dju (x+ j∆x, t)

Let us take the Fourier-Laplace transform of the above equations.

e−iw∆tũ = ũ+ ∆t
3∑
j−0

bje
−iwj∆tk̃

k̃ = − 1
∆x

3∑
j=−3

aje
−iαj∆xũ− 1

R

3∑
j=−3

dje
−iαj∆xū

Eliminate k̃ and use

w̄ =
i (e−iw∆t−1)

∆t
3P
j=0

bje−iw∆t

ᾱ(α∆x) = −i
∆x

3∑
j=−3

aje
ijα∆x

D̄(α∆x) =
3∑

j=−3

dje
ijα∆x
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We have

−iw̄ũ+ iᾱũ = − 1

R
D̃ (α∆x) ũ

This the dispersion relation is

w̄u = ᾱ− i

R
D̃ (α∆x) u

Consider the wave with α∆x = π (λ = 2∆x)(
π
α

= ∆x
π = α∆x

)
We have noted that

ᾱ (π) = 0.0
D̄ (π) = 1.0

w̄ = − 1

R
⇒ w̄∆t = −i∆t

R

When w̄∆t is a complex number, the time discretization scheme (optimized multi-
time level scheme) is stable

if Im (w̄∆t) > −0.29
⇒ ∆t

R
< 0.29 stable

In the numerical example shown, ∆t = 0.02 and 1
R

= 0.15 so that ∆t
R

= 0.3. We see
the numerical instability!

Figure 9.1: Filtering characteristics of different filter stencils
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10 Filtering approaches for the DRP scheme

10.1 Problem Statement – Why SAD makes us sad

0 0,5 1
α ∆x [xπ]

-2

-1,5

-1
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0

0,5

1

v gr
 [

 ]

DRP

long waves dispersive waves parasite waves

Figure 10.1: Group velocity of the DRP

As seen in figure 10.1 the DRP has a usable range of wavelengths, called long waves,
which is extended due to the optimization. The spatial discretization is suitable for waves
resolved down to 5.4 points or more per wavelength for the DRP presented by Tam [1].
The whole method consisting of time integration and spatial discretization is unstable,
if the waves reach the very short wave range, called parasite waves [2]. Between par-
asite and long waves dispersive waves are found, which are characterized by the high
dependency of the group velocity to the wavenumber. The system of spatial and time
discretization allows unphysically solutions which are the eigensolutions of the discretized
(FDE), but not of the PDE. The short wave range is defined due to the fact, that waves are
amplified in the time by the explicit one sided time discretization, if they reach this range.

The concept presented by Tam [2] to overcome this behavior is first to avoid this wave
number range, and then to use a selective damping. This should disallow the waves to
propagate below a certain resolution. Following the idea of Tam this concept can be
seen as a dissipative term in the Euler equation for the conservation of momentum. The
selectivity is obtained by optimizing the filtering coefficients to fit a Gaussian distribution
in the dissipation over wavenumber diagram. However, the disadvantages of the concept
are defined by the logical order of operations and the large dissipation, as we will see later.

10.2 Solution – Filtering

First we have to think about the order of operations. The selective damping is very strange
to handle. Because the unfiltered field is used to compute the flux in the Euler Equations
the new field is filtered only in parts and the filtering amplitude has to be adjusted to
the typical frequency! Thus the filtering amplitude has to be adjusted for each case and
the range of values differs from case to case. However, in principle the damping applies
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in every step and the new field is filtered. With the correct filtering amplitude the overall
method remains stable. The dissipation of the optimized filter in the long wave range is
too large! With a method optimized for low dissipation for short waves one could not
accept a dissipation in the range of 3×10−4 applied in each time step even for a resolution
of 32 ppw.

Figure 10.2: Filtering characteristics of different filter stencils

Now use the point of criticism to develop a new method. The filter should work on the
field variables p′ in order to find a new filtered field f ′.See fig. 10.3 for the position for the
filter.

FLUX = Euler−Equations

FLUX = FLUX + Numerical BC

FLUX = FLUX + Wall BC

Time integration step

Calculate Derivatives (DRP)
p’

p’

p’

p’

p’

p’−> f’

p’

FLUX = Euler−Equations

FLUX = FLUX + Numerical BC

FLUX = FLUX + Wall BC

Time integration step

Calculate Derivatives (DRP)
f’

f’

f’

f’

FLUX = FLUX + Selective artificial damping

Selective Artificail Damping (SAD) Filtering

Filter p’ −> f’

over all time stepsover all time steps

Figure 10.3: Selective artificial damping and filtering implementations in comparison (f ′

denotes the filtered, p′ the original field)

Because the whole method we are developing up to this point is based on explicit finite
difference approximations the filter should also be explicit.
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10.3 Derivation of a Taylor filter

Let’s say we find an approximation φ̄ for the value of a field variable φ in point n which
is based on −N to M neighboring points. φ̄ is supposed to be the filtered field and φ is
the original field. wj are the filter coefficients.

φ̄n =
M∑

j=−N

wj φn+j (10.1)

The error of such an filter in the wavenumber space is given by the answer to a harmonic
excitation in space with the relative wavenumber k∆x:

Ψ =
M∑

j=−N

wj exp[i j k∆x] =
M∑

j=−N

wj cos[j k∆x] + i
M∑

j=−N

wj sin[j k∆x] (10.2)

From (10.2) it can be observed, that a zero imaginary part would be achived by a sym-
metric set of filtering coefficients (M = N , wj = w−j) as the imaginary part is produced
by a sine function, which is anti-metric around zero. A symmetric distribution of points
involved into the filtering will allow zero imaginary parts and therefore no phase change:

wj = w−j (10.3)

Therefore we concentrate on these central filter stencils with M = N and consider (10.3)
as the first condition to our filtering stencil.

The way to find a good approximation to a given field, which includes no short waves
is a Taylor-series expansion. This technique is a standard for the filter design since
digital filters are developed. The idea is, that the Taylor-series expansion will give an
approximation by the neighboring points for the functional value in a given position,
which is smooth to a certain order given by the number of points N . Therefore we
develop (10.1) into a Taylor series around xn:

φ̄n = w−N

[
φn +

∂ φn
∂ x

(−N ∆x) +
1

2!

∂ 2φn
∂ x2

(−N ∆x)2 +
1

3!

∂ 3φn
∂ x3

(−N ∆x)3

]
+ w−N+1

[
φn +

∂ φn
∂ x

((−N + 1) ∆x) +
1

2!

∂ 2φn
∂ x2

((−N + 1) ∆x)2 +
1

3!

∂ 3φn
∂ x3

((−N + 1) ∆x)3

]
...

+ w0 [φn] (10.4)

...

+ wN−1

[
φn +

∂ φn
∂ x

((N − 1) ∆x) +
1

2!

∂ 2φn
∂ x2

((N − 1) ∆x)2 +
1

3!

∂ 3φn
∂ x3

((N − 1) ∆x)3

]
+ wN

[
φn +

∂ φn
∂ x

(N ∆x) +
1

2!

∂ 2φn
∂ x2

(N ∆x)2 +
1

3!

∂ 3φn
∂ x3

(N ∆x)3

]
+O(∆x4)

In a more general manner we could say that with a number of points in a distance j∆x
(j = −N . . .N) from the point we are looking for a Taylor series denoted by the infinite
sum over k = 0 . . .m:

φ̄n =
N∑

j=−N

wj

[
m∑
k=0

1

k!

∂ kφn
∂ xk

(j∆x)k

]
+O(∆xm+1) (10.5)
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After reordering the components with respect to the order of accuracy we can reach we
obtain:

φ̄n = [w−N + w−N+1 + . . .+ w0 + . . .+ wN−1 + wN ] φn

+ [w−N (−N) + w−N+1 (−N + 1) + . . .+ w0 0 + . . .+ wN−1 (N − 1) + wN (N)]
∂ φn
∂ x

+
[
w−N (−N)2 + w−N+1 (−N + 1)2 + . . .+ w0 0 + . . .+ wN−1 (N − 1)2 + wN (N)2

] ∂ 2φn
∂ x2

+
[
w−N (−N)3 + w−N+1 (−N + 1)3 + . . .+ w0 0 + . . .+ wN−1 (N − 1)3 + wN (N)3

] ∂ 3φn
∂ x3

+O(∆x4)

Reordered with respect to the finite sums and the summation indices j and k this equation
reads:

φ̄n =
m∑
k=0

∆xk

k!

∂ kφn
∂ xk

[
N∑

j=−N

(j)k wj

]
+O(∆xm+1) (10.6)

If the inner sum is zero respectively, the summand of the Taylor series is zero. To get
the approximation of the function value itself, the zero order must be multiplied by one.
Together we get the following conditions:

N∑
j=−N

wj = 1 (10.7)

N∑
j=−N

(j)wj = 0 (10.8)

N∑
j=−N

(j)2wj = 0 (10.9)

...
N∑

j=−N

(j)2(N−1)wj = 0 (10.10)

The symmetry condition (10.3) ensures a zero imaginary part and reduces the number of
unknown filter coefficients by N . All odd exponentials multiplied on the filter coefficients
are satisfied due to symmetry. Therefore only the even exponents give a new condition
to the wj. From (10.6) we can find only N of the N + 1 conditions to the unknown filter
coefficients. (10.7) to (10.10) plus the symmetry condition (10.3) do not fully fix the set
of filter coefficients. However, the further conditions to reach a higher approximation
order can not be fulfilled. It would conflict the conditions formulated before due to the
additional condition given by the symmetry. The number of conditions will extend the
number of unknown coefficients. With other words: we have to add points to achive a
higher order. With a 2N+1 point filtering stencil only a 2N th order Taylor approximation
to the value of a function itself can be achived.

The last condition to fix the set of coefficients is found by the filtering characteristics we
would like to achive. The short wave component should be deleted from the given field
fully, therefore we take the shortest resolvable wave and say that the answer of the filter
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to this input should be zero. The shortest possible wave resolved by only 2 ppw is a point
to point grid oscillation (see figure fig. 10.4) which is to be deleted:

0 =
N∑

j=−N

(−1)j wj (10.11)

-10 0 10
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 10.4: Spatial point to point oscillations (black circles), which should be deleted
(red circles)

10.4 Conditions to the filter coefficients

Altogether, the conditions to an 2N th order symmetric filter with 2N+1 coefficients reads
as follows:

N∑
j=−N

wj = 1

N∑
j=−N

(j)2wj = 0

N∑
j=−N

(j)4wj = 0

...
N∑

j=−N

(j)2(N−1)wj = 0

wj = w−j
N∑

j=−N

(−1)j wj = 0

79



Hint:

In some publications the filter is defined as a change with respect to the original value:

φ̄n = φn +
M∑

j=−N

wj φn+j (10.12)
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Figure 10.5: Idealized filter characteristics of both definitions

Due to the different definition we end up with a similar system, but the filter characteristics
are reversed. The sum for the order zero must equal zero now, as the higher orders do.
The answer to an point to point oscillation would be the negative value at the considered
position, so that we get φ̄n = φn − φn = 0 in this case:

N∑
j=−N

wj = 0

N∑
j=−N

(j)2wj = 0

N∑
j=−N

(j)4wj = 0

...
N∑

j=−N

(j)2(N−1)wj = 0

wj = w−j
N∑

j=−N

(−1)j wj = −1

The advantage of this definition is, that it allows a little filtering and it is directly appli-
cable as SAD in order to compare both methods directly. However, this kind of definition
is contrary to any publication on digital filters.
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10.5 Filter coefficients

Table 10.1: Filter coefficients for a filter defined to be φ̄n = φn +
∑M

j=−N wj φn+j

w−6 = w6 w−5 = w5 w−4 = w4 w−3 = w3 w−2 = w2 w−1 = w1 w0 O(∆xk)

- - - - - 1
4

−1
2

O(∆x2)

- - - - − 1
16

1
4

−3
8

O(∆x4)

- - - 1
64

− 3
32

15
64

− 5
16

O(∆x6)

- - − 1
256

1
32

− 7
64

7
32

− 35
128

O(∆x8)

- 1
1024

− 5
512

45
1024

− 15
128

105
512

− 63
256

O(∆x10)

− 1
4096

3
1024

− 33
2048
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1024

− 495
4096

99
512
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O(∆x12)
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Figure 10.6: Different standard filters and the DRP depending on α∆x

The more points are used for the filter, the wider is the bandwith of the passed wave-
lengths, i.e. a small filter could filter too much waves.
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10.6 Optimized filters

There are several publications on optimized filters, but they all suffer from the problem,
that the approximation characteristics in the error over wavenumber graph is made of only
N cosine functions. A optimization in order to move or steepen the cut off from pass band
to blocked wavelengths will therefore also lead to a larger error in the pass band. The
Taylor series is in an optimum if the dissipation over the pass band would be the criterion.

To achive better filter characteristics one would have to use more points in the filter
stencil. A comparison of the filter and the DRP characteristics helps to identify the 11
point filter as the best approximation to the ideal filter curve.

10.7 Comparison SAD vs. Filter

Compared to the selective artificial damping, the filter is less dissipative in the pass band.
The use of the modified filter formula allows to give a filter amplitude to control the dis-
sipation. The direct change of the field variables allows arbitrary adjustment of the filter
amplitude. The filter coefficients could even be used in a selective damping way.

The placement outside allows to give filter cycles. Filtering only every T th timestep allows
still to delete the short and dispersive waves, with at the same time even lower dissipation.
The computational performance of such an cycled filter even with higher point number is
better than that of the SAD.
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11 Wall Boundary Conditions for High-Order Finite

Difference Schemes

For a higher order finite difference scheme the order of the difference equations is higher
than that of the Euler equations. Therefore zero normal velocity boundary condition (wall
boundary condition) is not sufficient to define a unique solution. Additional conditions
must be imposed. Unfortunately these additional conditions would inevitably lead to
the generations of the spurious numerical waves. A special care (boundary condition) is
needed.

11.1 Definitions

Boundary points: the first three rows of points
adjacent to the wall

Interior points: points lying three rows or more away from the wall
Ghost points: points outside the wall

(the computational domain)

11.2 Why do we need the ghost points?

Fact
In the discretized system each flow variable at interior and boundary points is governed
by an algebraic equation (FDE). Thus the number of unknowns is exactly equal to the
number of equations.

Problem
There will be too many equations and not enough unknowns if we would like to enforce
the boundary conditions at the wall.

Solution
By introducing ghost points, the additional conditions imposed on the flow variables by
the wall boundary conditions can be satisfied. The number of ghost points must be equal
to the number of boundary conditions.

Let us consider an inviscid fluid flow condition, the wall boundary condition is v = 0 and
∂ ~v′n
∂ t

at y=0 where (u, v) are the velocity components in the x and y direction respectively.
We have one boundary condition; one ghost value is therefore needed for each boundary
point at the wall. The actual physical process suggests that a ghost value in pressure to
be considered:

Linearized Momentum Equation:

∂ ~v′

∂ t
= −~f(~v, grad~v, . . .)− 1

ρ0

gradp′ |·~n

∂ ~v′n
∂ t

= −~n~f(~v, grad~v, . . .)− 1

ρ0

∂ p′

∂ ~n

∣∣∣∣∣∂ ~v′n∂ t
= 0 with wall boundary condition

⇒ ∂ p′

∂ ~n
= −ρ0 · ~n · ~f(~v, . . .)

83



7-point stencils used for computation

stencils used for ∂ p
∂ y

stencils used for ∂ ρ
∂ y

, ∂ u
∂ y

, ∂ v
∂ y

11.3 Implementation

The 7-point-stencil DRP scheme:

~K
(n)
l,m = − 1

∆x

3∑
j=−3

aj ~E
(n)
l+j,m − 1

∆y

3∑
j=−3

aj ~F
(n)
l,m+j + ~H

(n)
l,m

~Q
(n+1)
l,m = ~Q

(n)
l,m + ∆t

3∑
j=0

bj ~K
(n−j)
l,m

The above scheme needs to be modified for the third element v of the discretized Euler
equations at the boundary (y = 0). Assuming m = 0 at y = 0, we have

v
(n+1)
l,0 = v

(n)
l,0 + ∆t

3∑
j=0

bjK
(n−j)
l,0 (11.1)

where Kn−j
l,0 =

(
dv
dt

)n−j
l,0

.

From the third equation of the Euler equations, ∂v
∂t

+ u0
∂v
∂x

= − 1
ρ0

∂p
∂y

we have

Kn−j
l,0 = − u0

∆x

3∑
i=−3

aiv
(n−j)
l+i,0 − 1

ρ0∆y

5∑
i=−1

a15
i
p

(n−j)
l,i (11.2)

where the backward stencil coefficient a15
i

means, that there is one point forwards and

five points backwards. The ghost value p
(n)
l,−1 is found by setting v

(n+1)
l,0 = 0, v0

l,n = 0 in

equation (11.1). Then we have K
(n−j)
l,0 = 0. From equation (11.2) with v

(n−j)
l+i,0 we can

determine the ghost value

p
(n)
l,−1 = − 1

a15
−1

5∑
i=0

a15
i p

(n)
l,i

which is equivalent to set the ghost value such that ∂p
∂y

= 0 at the wall.
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For viscous fluid flow, no-slip boundary condition is u = v = 0. The ghost value p
(n)
l,−1

ensures the condition v
(n+1)
l,0 = 0 is satisfied at the wall. But the wall also exerts a shear

stress τxy on the fluid to reduce the velocity component u to zero (u = 0). Another ghost

value (τxy)
(n)
l,−1 is needed to ensure that u

(n+1)
l,0 = 0. Therefore the same backward stencils

as for the pressure are used for ∂τxy/∂y in the x-momentum equation.

11.4 Symmetric Boundary Conditions

For symmetric boundary conditions, the values for pressure and velocity are mirrored on
the plane of symmetry. Consider a central 7-point-stencil:

physical domain boundary

computational domain boundary

i=1 2 3 4 5 6 7 imax-6 imax-5 imax-4 imax-3 imax-2 imax-1 imax

Boundary on the left:

ui = −u8−i

pi = p8−i

Boundary on the right:

ui = −uimax−6+(imax−i)

pi = pimax−6+(imax−i)
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12 Non-reflective Boundary Conditions

Since the DRP scheme and the PDE have the same dispersion relations in the limits of
ᾱ ' α, β̄ ' β and ω̄ = ω, the radiation and the Outflow boundary conditions can be
constructed from the asymptotic solutions obtained by the Fourier-Laplace analysis of the
Euler equations.

12.1 Radiation Boundary Conditions (Two-Dimension)

The asymptotic behavior of the acoustic waves is
ρ
u
v
p


a

=
F
(

r
V (θ)
− t, θ

)
r

1
2


1
a2
a

û(θ)
ρ0c0
V̂ (θ)
ρ0c0

1

+O
(
r−

3
2

)
(12.1)

acoustic waves (polar coordinates r, θ)

where

V (θ) = c0

[
M cos θ +

√
1−M2 sin2 θ

]
û (θ) = cos θ −M

√
1−M2 sin2 θ

V̂ (θ) = sin θ
[√

1−M2 sin2 θ +M cos θ
]

By taking the partial derivatives of equation (12.1) (first component) with respect to the
time t and the spatial coordinate r

∂ρ

∂t
=
−F ′

(
r

V (θ)
− t, θ

)(
1
c20

)
√
r

+O
(
r−

3
2

)
∂ρ

∂r
=

√
γ

V (θ)
F ′
(

r
V (θ)
− t, θ

)
− 1

2
√
r
F
(

r
V (θ)
− t, θ

)
r

[
1

c2
0

]
+O

(
r−

5
2

)
We have

1

V (θ)
· ∂ρ
∂t

+
∂ρ

∂r
+

ρ

2r
= 0 +O

(
r−

5
2

)
Similarly, we can derive for the far field

1

V (θ)
· ∂
∂t

+
∂

∂r
+

1

2r


ρ
u
v
p


a

= 0 +O
(
r−

5
2

)
(12.2)

θ is the angular coordinate of the boundary point and in Cartesian coordinates

∂

∂ r
=
∂ x

∂ r

∂

∂ x
+
∂ y

∂ r

∂

∂ y
= cos θ

∂

∂ x
+ sin θ

∂

∂ y

To solve the equations at the boundaries, the location of the source Q has to be determined
and then the radiuses and angles have to be evaluated for every boundary point.
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r

θ

source

u: radiation direction

u0, M: flow direction

boundary

Equation (12.2) provides a set of radiation boundary conditions without flow exiting the
domain (no incoming acoustic waves). With incoming acoustic waves and given ρin, uin,
vin and pin we have

(
1

V (θ)
· ∂
∂t

+
∂

∂r
+

1

2r

) 
ρ− ρin
u− uin
v − vin
p− pin


a

= 0 +O
(
r−

5
2

)

Note on the radiation boundary condition
1. Accurate and efficient in even moderate far field
2. Not suitable near acoustic sources or when the mean flow is very non-uniform.

12.2 Non reflective Layer boundary conditions

12.2.1 Termination of the computational domain by a simple sponge layer

We think about the 2D LEE written in terms of:

∂ q

∂ t
= −A ·

∂ q

∂ x
−B ·

∂ q

∂ y
−D · q︸ ︷︷ ︸

Fphys.

(12.3)

With
q :=

(
%′, u′, v′, w′, p′

)T
(12.4)

and the derivatives of q in x are multiplied by:

A :=


Ū %̄ 0 0
0 Ū 0 1

%̄

0 0 Ū 0
0 γ P̄ 0 Ū

 (12.5)

The derivatives in y are multiplied by:

B :=


V̄ 0 %̄ 0
0 V̄ 0 0
0 0 V̄ 1

%̄

0 0 γ P̄ 0 V̄

 (12.6)

The derivatives in the mean flow are for example given by:

D :=


∂ Ū
∂ x

+ ∂ V̄
∂ r

∂ %̄
∂ x

∂ %̄
∂ r

0
1
%̄

(Ū ∂ Ū
∂ x

+ V̄ ∂ Ū
∂ r

) ∂ Ū
∂ x

∂ Ū
∂ r

0
1
%̄

(Ū ∂ V̄
∂ x

+ V̄ ∂ V̄
∂ r

) ∂ V̄
∂ x

∂ V̄
∂ r

0

0 ∂ P̄
∂ x

∂ P̄
∂ r
− 1
P̄

[
Ū ∂ P̄

∂ x
+ V̄ ∂ P̄

∂ r

]
 (12.7)
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Then a simple sponge layer with proportional damping is defined by:

∂ q

∂ t
= −F phys.(q)−Rd(x, r) (q − q

0
) (12.8)

The proportional damping will dissipate any wave traveling towards the boundary region
of the domain. The formula is strongly oriented on the mechanical formulas of proportional
damping. This kind of so called Newton cooling/friction type damping in the sponge layer
was first introduced by Israeli [5]. Producing a simple 1D wave equation from equation
(12.8) we start with:

∂ p′

∂ t
+ c2 %̄

∂ u′

∂ x
+Rd p

′ = 0 (12.9)

∂ u′

∂ t
+

1

%̄

∂ p′

∂ x
+Rd u

′ = 0 (12.10)

Now like in the derivation of the wave equation we derive the equations in time and space
respectively:

∂ 2p′

∂ t2
+ c2 %̄

∂

∂ t

∂ u′

∂ x
+
∂ Rd p

′

∂ t
= 0 (12.11)

%̄
∂

∂ x

∂ u′

∂ t
+
∂ 2p′

∂ x2
+ %̄

∂ Rd u
′

∂ x
= 0 (12.12)

The wave equation is:

∂ 2p′

∂ t2
+
∂ Rd p

′

∂ t
= c2 %̄

∂ Rd u
′

∂ x
+ c2 ∂

2p′

∂ x2
(12.13)

Pressure and velocity are not fully decoupled, but one can observe, that a damping first
order derivative is added in the time. If we replace c2 %̄ ∂ Rd u

′

∂ x
we can also see, that a

damping first order derivative in space is added to the right hand side.

∂ 2u′

∂ t2
+
∂ Rd u

′

∂ x
=

1

%̄ c2

∂ Rd p
′

∂ x
+ c2 ∂

2u′

∂ x2
(12.14)

Even though the partial differential equation is not solved, we can conclude, that this
kind of damping will reduce the amplitude of waves traveling in any direction.

The main disadvantage is that the sponge layer will reflect waves, as the wave numbers
inside the interior domain and inside the sponge layer do not match. This may be overcome
by introducing a distribution of the damping coefficient, that shifts the main change of
wave number to a region inside the sponge layer (compare fig. 12.1):

Rd(x, r) =

 exp

{
−1

2
nP

d2
BC

∆x2
NC/F

}
, dBC < ∆xNC/F

0 , else

(12.15)

To further improve the performance the sponge layer could be stretched towards the
boundary, but stretching ratio should not exceed 1.05. Above the short wave generation
will annihilate the advantages of the stretching. Selective Damping or filtering is addi-
tionally highly recommended with grid stretching. The boundary condition is extremely
simple, but requires a extension of the domain. It works close to sources, as well as with
numerical artefacts. Due to the short wavelength the parasite waves are damped very
efficiently. The boundary condition is independent of the used physics and works with
LEE as well as APE or PENNE type equations. However, as the damping is not selective
a mismatch of wave numbers may lead to reflections. That is the reason to extend this
simple ”(sponge) layer”boundary condition by a more thought over one. In case of sheared
flow or instability waves, this kind of boundary condition is unstable even.
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Figure 12.1: Damping distribution and stretched axisymmetric grid

12.2.2 Split formulation of the PML

In the frequency domain a useful technique to produce non–reflective boundary conditions
is to introduce a imaginary part to the frequency. The perfect matching is reached by
keeping the dispersion relation constant, and only adding a imaginary part to the fre-
quency and the related wave number pointing towards the outer boundary of the PML.
As only the wave components impacting normal to the end of the computational domain
should be damped, the developers of the PML introduced a split of variables. Even the
earliest PML for the electrodynamics from Berenger [1] used this kind of derivation. For
an arbitrary vector q this reads in the frequency domain:

−i ωq̂
x

+ σx q̂x = −A ·
∂ q̂

∂ x

−i ωq̂
y

+ σy q̂y = −B ·
∂ q̂

∂ y

(12.16)

Please note that electrodynamics do not account for any convective effects and we use a
e−iω t convention. This is the reason that the simple transcription of the so called split
PML to the LEE by Hu [3] in the time domain is unstable if a mean flow is present [6].

∂ q̂
x

∂ t
+ σx q̂x = −A ·

∂ q̂

∂ x
∂ q̂

y

∂ t
+ σy q̂y = −B ·

∂ q̂

∂ y

(12.17)
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12.2.3 Unsplit formulation of the PML

There are two things solved by Hu [4]:

(a) The original PML is unstable under a mean flow

(b) The split of the variables has to be maintained in the whole computational domain,
which doubles the number of variables in 2D and makes the equations not easy to
implement.

(c) The mean flow derivatives are not yet accounted for.

2. Unsplitting the PML Let us first address the second point. The split of the vari-
ables can be undone following Hu [4]:

We multiply the split equations by 1 + i σx
ω

and 1 + i σy
ω

respectively:

−i ω
(
1 +

i σx
ω

) (
1 +

i σy
ω

)
q̂
x

= −
(
1 +

i σy
ω

)
A ·

∂ q̂

∂ x

−i ω
(
1 +

i σx
ω

) (
1 +

i σy
ω

)
q̂
y

= −
(
1 +

i σx
ω

)
B ·

∂ q̂

∂ y

(12.18)

Then the equations are added up, and as the factor in front of the left hand side is equal,
we can unsplit the left hand side as q̂ = q̂

x
+ q̂

y
:

−i ω
(
1 +

i σx
ω

) (
1 +

i σy
ω

)
q̂ =

−
(
1 +

i σy
ω

)
A ·

∂ q̂

∂ x

−
(
1 +

i σx
ω

)
B ·

∂ q̂

∂ y

(12.19)

Multiplying and sorting all the terms into the exponents of −iω delivers the PML equation
for one frequency. The back transformation into the time domain is done replacing the
−i ω terms by time derivatives and the i

ω
terms by time integrals. To allow this we

introduce a new variable q1, which is only defined and computed in the PML region:

∂ q1

∂ t
= q̂ (12.20)

One can see that the number of variables has not really reduced in the PML, but the
implementation is simplified.

1. Stability to the PML The reason for the instability of the PML is the mean
flow. It allows waves, that have positive group velocity, but negative phase velocity. The
PML printed above is not well posed in this case. The whole idea works only, if there is
phase and group velocity with equal signs. This is always true for the vorticity and entropy
modes, but the acoustic waves produce errors. To get rid of the problem, a transformation
to the moving frame of reference is introduced. This allows to use the original PML and
it will be well posed by default. Then the backward transformation will give the stable
PML formulation for the fixed frame.
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3. Accounting for the mean flow This part is the simplest, as the mean flow can be
seen as a source term. This source term changes wave numbers and produces reflections
therefore. The PML is artificial. The sources in this region should not be accounted
specially for the PML.

q̂ = q̂
x

+ q̂
y

+ q̂
M

(12.21)

So simply do nothing additional, but keep this part in the LEE. The PML assumes a
constant mean flow in the PML, which may lead to an ill posedness, if highly not satisfied.
However, even shear layers and instability waves are absorbed by the unsplit PML.

Final PML formulation in 2D Finally we end with the PML of Hu in a very simple
formulation:

∂ q̂

∂ t
= −A ·

∂ q̂

∂ x
−B ·

∂ q̂

∂ r
− 1

r
C · q̂ −D · q̂︸ ︷︷ ︸

Euler equations

−(σx + σr + σϕ) q̂︸ ︷︷ ︸
sponge layer

−(σx σy) q1
− σy A ·

∂ q
1

∂ x
− σxB ·

∂ q
1

∂ y

− Mx

1−M2
x

A ·
[
σx q̂ + σx σy q1

]
︸ ︷︷ ︸

fixed frame correction

(12.22)

There are several different groups developing PML equations for the LEE e.g. Hesthaven
[2]. It seems that there are perfectly matched several solutions, that depend on the
definition of the auxiliary variable q

1
. As the PML is in fact a sponge layer with correction

for the preservation of the dispersion relation, the damping coefficient could be distributed
in the same way. The PML damping coefficient can however be adjusted more freely. The
allowed range is large, and even though it should be smooth to minimize reflections, the
PML can be very short compared to the sponge layer.

12.3 Outflow Boundary Conditions (Two-Dimension)

At the outflow boundary, it consists a combination of entropy, vorticity and acoustic
waves. Therefore, if the flow points in positive x-direction outside the domain

ρ
u
v
p

 = +


f (x− u0t, y) + ρa
∂ψ
∂y

(x− u0t, y) + ua
−∂ψ

∂y
(x− u0t, y) + va

pa

 + ... (12.23)

As we can see that the outflow boundary condition for p is the same as that of the radiation
boundary condition.

1

V (θ)

∂p

∂t
+
∂p

∂r
+

p

2r
= 0

and in Cartesian coordinates,

1

V (θ)

∂p

∂t
+ cos θ

∂p

∂x
+ sin θ

∂p

∂y
+

p

2r
= 0

The first component of (12.23) contains an additional term from the entropy. By taking
the partial derivatives of equation (12.23) with respect to the time t and the spatial
coordinate x
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∂ρ

∂t
= −u0f

′ (x− u0t, y) +
∂ρa
∂t

∂ρ

∂x
= f ′ (x− u0t, y) +

∂ρa
∂x

we have
∂ρ

∂t
+ u0

∂ρ

∂x
=
∂ρa
∂t

+ u0
∂ρa
∂x

Due to the fact that pa = p = c2
0ρa (the acoustic equation of state), ρacan be eliminated.

The outflow boundary condition for ρ is therefore

∂ρ

∂t
+ u0

∂ρ

∂x
=

1

c2
0

(
∂p

∂t
+ u0

∂p

∂x

)
The second and third component of (12.23) contains additional terms from the vorticity.
Following the same procedure, we have

∂u

∂t
+ u0

∂u

∂x
=

∂ua
∂t

+ u0
∂ua
∂x

∂v

∂t
+ u0

∂v

∂x
=

∂va
∂t

+ u0
∂va
∂x

Since the acoustic components satisfy the linearized Euler equations

∂ua
∂t

+ u0
∂ua
∂x

= − 1

ρ0

∂pa
∂x

= − 1

ρ0

∂p

∂x
∂va
∂t

+ u0
∂va
∂x

= − 1

ρ0

∂pa
∂y

= − 1

ρ0

∂p

∂y

The outflow boundary conditions for the velocity components u and v are after eliminating
ua and va

∂u

∂t
+ u0

∂u

∂x
= − 1

ρ0

∂p

∂x
∂v

∂t
+ u0

∂v

∂x
= − 1

ρ0

∂p

∂y

The outflow boundary conditions for all the variables are

∂ρ
∂t + u0

∂ρ
∂x = 1

c20

(
∂p
∂t + u0

∂p
∂x

)
∂u
∂t + u0

∂u
∂x = − 1

ρ0

∂p
∂x

∂v
∂t + u0

∂v
∂x = − 1

ρ0

∂p
∂y

1
V (θ)

∂p
∂t + cos θ ∂p∂x + sin θ ∂p∂y + p

2r = 0

(12.24)

where V (θ) is the same as in equation (12.1).
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12.4 Implementation of Radiation and Outflow Boundary Con-
ditions

To decide whether a radiation or a outflow boundary condition should be used, one can
use the radial source normal vector ~nr at the boundary:

~nr · ~u0 ≤ 0⇒ radiation boundary condition (12.2)

~nr · ~u0 ≥ 0⇒ outflow boundary condition (12.24)

source

nr

u0

outflow boundary
nr

.u0>0u0

u0

nr

nr
.u0<0

ra
di

at
io

n 
bo

un
da

ry

For 7-point-stencil schemes, three columns and/or rows of grid points very next to the
boundaries of the computational domain are considered as a boundary region. In a bound-
ary region, instead of solving the Euler equations, the radiation or outflow boundary con-
ditions (in terms of PDEs) are solved using the same DRP scheme and the optimized
multi-time level time discretization.

The two sets of the discretized equations for the boundary region and the interior region
are advanced simultaneously. At some grid points, it is impossible to use symmetric
spatial stencils. The optimized backward differences (7-point-stencils) are used when
necessary. Point A and point B are typical grid points with symmetric spatial stencils
and asymmetric spatial stencils.

Boundaries of the physical domain
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13 Nonlinear CAA

The linear wave equation does not consider certain nonlinear effects correctly:

• High amplitudes

• Interaction of the different modes of turbulence (acoustic, vortex and entropy)

• Shocks forming

Below a formulation will be derived which can handle dissipation and interaction between
modes more probably, but the appearance of shocks will still be excluded. This lecture
follows the considerations of Long [1]

mass conversation:
∂ ρ

∂ t
+ ~u ·

(
~∇ρ
)

+ ρ
(
~∇ · ~u

)
(13.1)

Dividing quantities in mean values and perturbations:

ρ = ρ̄+ ρ′

~u = ~̄u+ ~u′ (13.2)

p = p̄+ p′

Employing this to the mass conversation:

∂ (ρ̄+ ρ′)

∂ t
= (~̄u+ ~u′) ·

[
~∇(ρ̄+ ρ′)

]
+ (ρ̄+ ρ′)

[
~∇ · (~̄u+ ~u′)

]
(13.3)

It is assumed that ρ̄ and ~̄u are the temporal mean values and hence ∂ ρ̄
∂ t

= 0

⇒ ∂ ρ′

∂ t
+ ~u · (~∇ρ̄) + ρ̄(~∇ · ~u)︸ ︷︷ ︸

=0

+ ~u ·
[
~∇ρ′
]

+ ~u′ ·
[
~∇ρ̄
]

+ ρ̄
[
~∇ · ~u′

]
+ ρ′

[
~∇ · ~u

]
(13.4)

+ ~u′ ·
[
~∇ρ′
]

+ ρ′
[
~∇ · ~u′

]
︸ ︷︷ ︸

2nd order terms 6= 0

= 0

The first bracket under the terms which depend only on the mean values is zero, because
they itselves fulfill the mass conversation. The second brace emphasis the extra terms,
which are in the nonlinear theory not negelectable.
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13.1 Dimension free formulation

Equation (13.4) is applied to the characteristic factors (table 13.1), to obtain a dimen-
sionless formulation:

quantity characteristic factor
ρ ρ∞
~u c∞
t R/c∞
~x R
p ρ∞c

2
∞

∇ 1/R

Table 13.1: characteristic factors

c∞
R

∂ ρ∞ρ̂
′

∂ t
+

1

R
~̂u′c∞ ·

[
∇̂ρ∞ ˆ̄ρ

]
+

1

R
ρ∞ ˆ̄ρ

[
∇̂ · c∞~̂u′

]
+

1

R
~̂uc∞ ·

[
∇̂ρ∞ ˆ̄ρ

]
+

1

R
ρ∞ρ̂

′
[
∇̂ · c∞~̂u

]
(13.5)

+
1

R
c∞~̂u

′ ·
[
∇̂ρ∞ρ̂′

]
+

1

R
ρ∞ρ̂

′
[
∇̂ · c∞~̂u′

]
= 0

⇒ c∞ρ∞
R

[
∂ ρ̂′

∂ t
+ ~̂u · (∇̂ρ̂′) + ~̂u′ · (∇̂ ˆ̄ρ) + ˆ̄ρ(∇̂ · ~̂u′)

+ρ̂′(∇̂ · ~̂u) + ρ̂′(∇̂ · ~̂u′) + ~̂u′ · (∇̂ρ̂′)
]

= 0

(13.6)

Equation (13.6) is now dimensionless. It is equal to (13.4), except that the ordinary un-
knowns are substituted byˆunknowns and the constant factor c∞ρ∞

R
is put in front of the

equation. If it’s ρ̄ = ρ∞ in the whole domain, ˆ̄ρ becomes 1 and all derivatives of ˆ̄ρ are
zero. So far it seems that applying the dimensionless form of an equation does not give
many advantages.

Though, the exclusion of a constant factor yields the equation for the mass conservation
is now of order 101 (CFL ≈ 1 = c∆x/∆t). This is advantageous for computations, since
computers have only a finite accuracy, which has its highest resolution around 1. If the
equation stays in that range even after operations like multiplication and division, the
truncation error is of minor importance. Beyond that the accuracy can be enhanced if
R ≈ ∆x,∆y,∆z, and the mean values are equal to the unknowns in infinity (ρ̄ = ρ∞).

In addition, the momentum equation has its scale factor. Consider the momentum equa-
tion in primitive form, divided by ρ, the first term is given by:[

∂ ~u

∂ t

]
=
m

s2
;

c2
∞
R

(13.7)

It is sufficient considering only the first term, because the entire equation must have the
same dimension. Thus also the energy equation, in primitive form can be normalized, by
considering only the first term: [

∂ p

∂ t

]
=
kgm

m2s3
;

ρ∞c
3
∞

R
(13.8)
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A remarkable feature of the non-dimensional equations is, that the speed of sound in this
modified system is equal to 1 if the characteristic factors are chosen to equal the constant
mean values. Although the mean pressure is not uniform anymore, it equals 1/γ. After
normalization the momentum equation also has to be applied to the separation into mean
value and perturbation (equation (13.2)). In the following the ˆ -mark, indicating the
normalized form, will be omitted.

ρ

[
∂ ~u

∂ t
+ ~u · (∇~u)

]
= −∇p

⇒ (ρ̄+ ρ′)

[
∂ (~u+ ~u′)

∂ t
+ (~u+ ~u′) ·

[
∇(~u+ ~u′)

]]
= −∇(p̄+ p′) (13.9)

⇒ ∂ ~u

∂ t
+ ~u · (∇~u) +

∇p̄
ρ̄︸ ︷︷ ︸

=0 (mean momentum eq.)

−∇p̄(ρ̄+ ρ′)

(ρ̄+ ρ′)ρ̄
+
∇p̄
ρ̄+ ρ′

+
∂ u′

∂ t
+ (~u+ ~u′) · (∇~u′) +

∇p′

ρ̄+ ρ′
+ ~u′ · (∇~u) = 0 (13.10)

with
ρ′

ρ̄(ρ̄+ ρ′)
=

ρ′

ρ̄ρ
=

ρ

ρ̄ρ
− ρ̄

ρρ̄
=

1

ρ̄
− 1

ρ
(13.11)

We finally get the momentum equation for the perturbed nonconservative nonlinear Euler
equations (PENNE) formulation

⇒ ∂ u′

∂ t
= −

[
(~u+ ~u′) · (∇~u′) +

∇p′

ρ̄+ ρ′
+ ~u′ · (∇~u)− ρ′

ρ̄(ρ̄+ ρ′)
∇p̄
]

(13.12)

Note: If the momentum equation is not divided by ρ the result (13.12) looks different,
because the mean flow would fulfill a slightly different equation. However, it will
lead to more exact results, if the mean pressure gradient is used instead of the
velocity gradients.

Finally the energy equation has to be adapted to (13.2). A simplified form of it denotes

∂ p

∂ t
+ ~u · (∇p) + γp(∇ · ~u) = 0 (13.13)

and with equation (13.2):

∂ p̄+ p′

∂ t
+ (~u+ ~u′) · [∇(p̄+ p′)] + γ(p̄+ p′)

[
∇ · (~u+ ~u′)

]
= 0 (13.14)

Separating the mean flow equation from the acoustic equation.

∂ p̄

∂ t
+ ū · (∇p̄) + γp̄(∇ · ~u) = 0 (13.15)

∂ p′

∂ t
= −

[
(~u+ ~u′) · (∇p′) + γ(p̄+ p′)(∇ · ~u′) + ~u′ · (∇p̄) + γp′(∇ · ~u)

]
(13.16)
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A Acoustic Noise Fundamental and Measures of Sound

Acoustic disturbance can be considered as small-amplitude perturbations to an ambient
state, (

p0, ρ0,
~U0

)
.

The ambient-field variables satisfy the governing equations.

p = p0 + p′

ρ = ρ0 + ρ′

etc.

where p′ and ρ′ represent the acoustic disturbances to the overall pressure and density
field.

A.1 Definitions

Ambient state: The medium through which sound propagates.

A homogeneous medium: All ambient variables are independent of position.

A quiescent medium: All ambient variables are independent of time and
−→
U 0 = 0.

An isentropic medium: Physical properties are independent of the direction in

which they are measured.

From the linear wave equation,
∂2p

∂t2
= c2∇2p

we can see that at any spatial location where p is a maximum ( ∂
2p
∂x2 < 0, ∇2p < 0), the

value of p should be accelerated forward decreasing p
(
∂2p
∂t2

< 0
)

. Otherwise
(
∂2p
∂t2

= −c2∇2p
)

,

the acoustic pressure at the point would grow without a bound and the medium would
be unstable.

A.2 Questions

(a) What is a wave?
The wave is a disturbance that travels through a medium (a gas, a liquid, or a solid)
Sonic waves: Sound waves that can be perceived by the hearing sense of a human
being.

(b) How does wave travel?
Longitudinal propagation:
A longitudinal wave is a wave in which particles of the medium move in a direction
parallel to the direction the wave moves.

(c) Transverse propagation:
A transverse wave is a wave in which particles of the medium move in a direction
perpendicular to the direction the wave moves
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A.3 Acoustic Noise Fundamentals

• Sound is a change in pressure with respect to the atmosphere

• Noise is unwanted sound

• Speed of sound in air is about 1 130 ft/sec (340 m/sec)

• Wavelength λ = c/f ,

where c = speed of sound
f = frequency of sound (cycles per sec)

• Normal range of hearing is 20 Hz to 10 000 Hz

• Most sensitive range is 1 000 Hz to 4 000 Hz.

A.4 Measures of Sound

Root-Mean-Square Sound Pressure Most common sounds consists of a rapid, irreg-
ular series of positive-pressure disturbances (rarefaction) measured from the equilibrium
pressure value. If we were to measure the mean value of the sound pressure disturbance,
we would find that it would be zero because there are as much positive compression as
negative rarefactions. Thus, the mean value of sound pressure is not a useful measure.
We therefore look for a measure that allows the effects of the compressions to be added
to the effects of the rarefactions, i.e., the rms sound pressure prms

(a) Squaring the value of the sound pressure disturbance at each instant of time

p′2(t)

(b) The squared values are added and averaged over the sample time

(
P 2
)

avg
=

1

T

∫ t+T

t

p′2 (t) dt

(c) The rms sound pressure is the square root of this time average

prms =

√
(Pavg)2

Sound level is a logarithmic scale:

SPL (Sound pressure level) = 10 log

[
(p2)rms

p2
ref

]
= 20 log

prms

pref

:= Lp(dB)

where pref= reference sound pressure, which is 2× 10−5 N/m2 (20µPa) for airborne sound
and 10−6 Pa for underwater sound.

The correspondence between the sound pressure level Lp and prms

prms = pref10Lp/20

Therefore, increasing Lp by 20 dB implies increasing prms by a factor of 10.
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Understanding Decibels The decibel (abbreviated dB) is the unit used to measure
the intensity of a sound. On the decibel scale, the smallest audible sound (near total
silence) is 0 dB. A sound 10 times more powerful is 10 dB. A sound 100 times powerful
than near total silence is 20 dB. A sound 1000 times powerful than near total silence is
30 dB.

The following are some common sounds and their decibel ratings:

0 dB essentially no sound heard

15 dB a whisper

35 dB quite home

60 dB normal conversation

70 dB noisy street

90 dB a lawn mower

110 dB a car horn

120 dB a rock concert

140 dB a gunshot or firecracker

We know from our own experience that distance affects the intensity of sound, i.e. if we
are far away from the sound source, the power is extremely diminished. All of the ratings
above are taken while standing close to the sound source.

Adding decibels

dB1+dB2+. . . +dBn = 10log(10dB1/10+10dB2/10+. . . +10dBn/10)

Examples:

(a) Two equal decibel values (i.e. two identical fans) add to produce a 3 dB increase.
86 + 86 = 89 dB
100 + 100 = 103 dB

(b) Two decibel values differing by 6 dB add to produce a 1 dB increase
86 + 80 = 87 dB
100 + 94 = 101 dB

(c) N sources generating the same sound level are combined, the overall sound pressure
level will increase by 10log(N) dB

Acoustic Intensity The acoustic intensity I is defined as

I =
1

T

∫ T

0

p ~u · ~n d t (Watt /m2)

It is the time-averaged rate of energy transmission through a unit area normal to the di-
rection of propagation. It is the product of sound pressure and acoustic particle velocity.

For a plane harmonic wave

I = ± P 2

2ρ0c

where P is the peak acoustic pressure amplitude.
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Acoustic power Acoustic energy delivered per unit time (Watts), i.e. the energy trans-
mission through an area normal to the direction of sound propagation.

Directivity Directivity is a measure of the directional characteristic of a sound source.
It is the ratio of the sound intensity produced by a sound source on a specific axis to that
of a point source that is producing the same acoustic power.

D =
Iax(r)

Is(r)

Noise Analysis

• Microphone - Measures pressure fluctuations

• Analyzer - Takes amplified pressure fluctuations and processes the information into
useful information.

• Octave Band Analysis

Octave Band Because most sound are complex, fluctuating in amplitude and frequency
content, the relationships between sound energy level and frequency are required for mean-
ingful analysis (data plotted in this way is called sound spectrum).

Figure A.1: Sound Spectrum of an Air-Compressor

For most engineering applications themain concern is in the frequency range from 20 to
20,000 Hz. Although it is possible to analyze a source on a frequency by frequency basis,
this is both impractical and time-consuming. For this reason, a scale of octave bands and
one-third octave bands has been developed. Each band covers a specific range of frequen-
cies and excludes all others. The word ”octave” is borrowed from musical nomenclature
where it refers to a span of eight notes, i.e. do to do. The ratio of the frequency of the
highest note to the lowest note in an octave is 2:1.
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If fn is the lower cut-off frequency and fn+1 is the upper cut-off frequency, the ratio of
band limits is given by

fn+1

fn
= 2k with

{
k = 1 for full octave bands

k = 1
3

for one-third octave bands

An octave has a center frequency that is
√

2 times the lower cut-off frequency and has an
upper cut-off frequency that is twice the lower cut-off frequency. Therefore,

f2 = 2 f1

f0 =
√

2 f1

f1 = f0

/√
2

bw = f2 − f1

upper cut-off frequency
center frequency
lower cut-off frequency
band width
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A.5 Air Mover Selection Hints

• Run as slow as possible

• Pick a fan that will operate at peak efficiency

• Be aware of blade passing frequency and harmonics

• Blade Passing frequency = N·Z/60 (Hz)

where N = # of blades
Z = rotational frequency in RPM

• Fundamental noise frequency must not equal mounting structure natural frequency

• Limit line of sight to prop / rotor

• Acoustic dampening foam

• Filters can dampen noise

• Mechanical isolation

• Control air velocity in system. The lower the better.

• Keep sharp objects away from prop / rotor. This will create another fundamental
frequency

• Put fan as far away from noise critical areas as possible

Noise Basics There are three basic sources of noise in an air mover: aerodynamic,
mechanics and motor. Aerodynamic noise is comprise of three basic components:

blade noise
turbulence
vortex shedding noise

Of these three, the blade-passing tone generally dominates the noise. The blade-passing
tone results from the air momentum which occur every time a blade passes a given point.
The number of times such momentums occur per second determines the fundamental
blade-passing frequency. This is given by:

ffund =
N · Z

60
Hz, where

Z = number of blades
N = rotation speed in RPM

As the speed or the number of blades increases, the fundamental blade-passing frequency
increases.

Small scaled turbulence is present in almost any environment. As this passes through a
fan or blower, it produces a fluctuating lift on the blades. This produces a fluctuating
pressure in the air and hence noise. The frequency characteristics of such noise is broad-
band and the intensity generally low, unless the turbulence intensity is caused by sharp
objects or obstructions adjacent to the inlet of the fan or blower.

Mechanical noise in fans and blowers can be caused by either vibration or misalign and
worn bearings. Imbalances in rotary components are the primary cause of vibration
which ultimately results in structural noise and at times failure of the component due to
resonance. The frequency of such noise depends on the rotational speed. The fundamental
frequency due to rotary imbalance is given by

fn =
N

60
, where N = rotation speed (RPM)
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B Aliasing

For a fixed, mesh size (∆x), the resolved wavenumber range is −π ≤ α∆x ≤ π. For ultra
short waves with wavelengths less then 2∆x (or α∆xπ), the waves are unresolved in a
finite difference computation. They are aliased into different wavenumber.

Consider the problem
∂ u

∂ t
+
∂ u

∂ x
= 0

with initial condition

u(t = 0) = e− ln 2(xb )
2

cos (α0x)

For convenience of analysis, the initial condition is modified to a complex expression (the
real part of the initial condition is used to obtain the solution)

u(t = 0) = e− ln 2(xb )
2
+iα0x

The Fourier transform of the initial condition is

ũ(t = 0) =
b

2
√
π ln 2

e
− ln 2

h
(α−α0)b

2 ln 2

i2

In the wavenumber space, the initial Gaussian pulse has a half-width of 2 ln 2
b

. The initial
condition represents waves concentrating around a wavenumber of α = α0. The discretized
expression for the initial condition is

fl = ul = e− ln 2( l∆xb )
2

eiα0∆xl

Assuming π < α0∆x < 2π (α0 unresolved wavenumber) we can write

α0∆x = π + δ

and therefore
eiα0∆xl = ei[2π+(δ−π)]l = ei(δ−π)l

The discretized initial condition becomes

fl = ul = e− ln 2( l∆xb )
2
+i (δ−π)l

In terms of a continuous variable x, the initial condition is

f (x) = u (x) = e− ln 2(xb )
2
+i

(δ−π)x
∆x

This represents waves concentrating around a wavenumber α = δ−π
∆x

=
(
α0 − 2π

∆π

)
. These

are waves lying within the resolved wavenumber range. As we have shown that unresolved
wavenumber α0∆x becomes resolved wavenumber α∆x due to the discretization. We
define the aliased wavenumber as Aliased wavenumber

α = α0 − 2π
∆x

with
α : aliased wavenumber
α0 : wavenumber

B.1 Numerical Examples

(a) α0∆x = 3.9 b = 20∆x α∆x = 3.9− 2π = −2.383
For this aliased wavenumber, the group velocity is negative

(b) α0∆x = 5.48 b = 20∆x α∆x = 5.48− 2π = −0.803
For this aliased wavenumber, the group velocity is nearly equal to 1.0.
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C High-Order Optimized Upwind Schemes

Consider the one-dimensional scalar model wave equation

∂u

∂t
+ C

∂u

∂x
= 0

where C is the speed of wave propagation.

Without the loss of generality, we assume that C > 0. The approximation of the first
order spatial derivative ∂u/∂x by a finite difference on an uniform grid of spacing ∆x is
given by (

∂u

∂x

)
l

≈ 1

∆x

M∑
j=−N

ajul+j

By performing the Fourier transform on the continuous form of the above equation, we
define

ᾱ = − i

∆x

M∑
j=−N

aje
iαj∆x

⇒ α∆x = −i
M∑

j=−N

aje
iαj∆x

Let β̄ = α∆x, β̄ = βr + iβi and β = α∆x. The integrated error E is defined as

E =

∫ β0

0

∣∣βr − β∣∣2dβ + λ

∫ β0

0

∣∣∣∣∣βi + sgn (C) exp

[
− ln 2

(
β − π
σ

)2
] ∣∣∣∣∣

2

dβ

where β0 is a predetermined number (same like the central DRP schemes discussed before)
which gives the optimized range of wavenumber. The parameter λ is a weighting coefficient
and the parameter τ adjusts the width of the Gaussian function.

Since βr = Re
{
β
}

=
M∑

j=−N
aj sin (jβ)

βi = Im
{
β
}

= −
M∑

j=−N
aj cos (jβ)

E =

∫ β0

0

[
M∑

j=−N

aj sin (jβ)− β

]2

dβ

+ λ

∫ β0

0

[
−

M∑
j=−N

aj cos (jβ) + exp

[
− ln 2

(
β − π
σ

)2
]]2

dβ (C.1)

The necessary conditions that E is a minimum for all the free coefficients are

∂E

∂al
= 0, l = −N,−N + 1, . . . ,M − P − 1

where P is the order of accuracy of the finite difference scheme and P ≤M +N(
e.g. M = 2, N = 4, P = 4,

∂E

∂al
= 0, l = −4,−3

)
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The first term in equation (C.1) minimizes the distance between βr and β in the form of
L2 norm. The second term, instead of minimizing the distance between βi and 0, min-
imizes the distance between βi and a Gaussian function in the form of L2 norm. The
Gaussian function is almost zero when the value of β is far from π. The Gaussian term is
chosen such that the imaginary part of the effective wavenumber βi is very close to zero
for waves with wavenumbers within a certain range. The second term also allows controls
over short wave or high frequency damping by adjusting the control parameter σ.

As it is in a traditional finite difference scheme, the upwind scheme uses more stencils
upwind (from the left) than downwind since the wave is assumed to propagate to the right
(C > 0). If the wave is propagation to the left (C < 0), the upwind biased scheme uses
more stencil points from the right than those from the left

(e.g. C > 0 : M = 2, N = 4; C < 0 : M = 4, N = 2)

The coefficients of the DRP scheme for C < 0 can be derived directly from its correspond-
ing counterpart for C > 0 if the same number of stencil points and the same fashion of
bias are used.

The effective wavenumber α of the scheme with coefficients aMN
j is the complex conjugate

of that of the scheme with coefficients aNMj . The opposite sign in the imaginary part of
the effective wavenumber α of the two schemes is needed to ensure the stability of the
schemes for waves propagating in two contrary directions. That is

aNMj = −aMN
−j

e.g. N = 4, M = 2, j is from −N to M

a42
−4 = −a24

4

a42
−3 = −a24

3

a42
−2 = −a24

2

a42
−1 = −a24

1

a42
0 = −a24

0

a42
1 = −a24

−1

a42
2 = −a24

−2

↑ ↑
C > 0 C < 0
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C.1 Procedures for finding coefficients aj
M∑

j=−N
aj = 0

M∑
j=−N

ajj = 1

M∑
j=−N

ajj
k = 0


(P + 1) (number of equations)

where k = 2, 3, . . . , P . Together with the minimization condition

∂ E

∂ al
= 0, l = −N,−N + 1, . . . ,M − P − 1

↑
(M +N − P ) (number of equations)

Therefore we have the total M +N + 1 unknowns and M +N + 1 equations (one linear
system).

The partial derivatives of aj over al appeared in ∂ E
∂ al

can be obtained by solving the
following linear system.

∂ aj
∂ al

= δjl for j = −N,−N + 1, . . . ,M − P − 1,

and
M∑

j=−N

jκ
∂ aj
∂ al

= 0 for κ = 0, 1, . . . , P.

For M = N and a−j = −aj, the finite difference scheme becomes a central different
scheme

Im
{
β
}

= −
M∑

j=−N

aj cos (jβ) = a0 −
M∑
j=1

(aj cos (jβ) + aj cos (jβ)) = a0

Since
M∑

j=−N
aj = 0 (Taylor series expansion), it implies a0 = 0 for central scheme.

For λ = 0.0374 and τ = 0.2675π, the coefficients aj are given in tables 1 & 2.0.
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C.2 Some General Note on Upwind Schemes

Consider again the ”wave equation”.

∂u

∂t
+ C

∂u

∂x
= 0

Now we do not make any assumptions as to the sign of C. We can rewrite the above
equation as

∂ u

∂ t
+
(
C+ + C−

) ∂ u
∂ x

= 0 where C± =
C ± |C|

2

{
C ≥ 0 : C+ = C, C− = 0

C ≤ 0 : C+ = 0, C− = C

Now for the C+ (≥ 0) term we can safely use backward difference and for C− (≤ 0) forward
difference. This is the basic concept behind upwind methods, that is, some decomposition
or splitting of the fluxes into terms which have positive and negative characteristic speeds
so that appropriate differencing schemes can be chosen.

Flux-Vector Splitting The Euler equations form a hyperbolic system of partial differ-
ential equations. Many aspects of numerical methods for such a system can be understood
by studying a one-dimensional constant-coefficient linear system of the form

∂ ~u

∂ t
+ A

∂ ~u

∂ x
= 0

where ~u = ~u (x, t) is a vector of length m and A is a real m×m matrix.

For conservation laws, this equation can be written as

∂ ~u

∂ t
+
∂ ~f

∂ x
= 0 (C.2)

where ~f is the flux vector and A = ∂ ~f
∂ ~u

is the flux Jacobian matrix. The entities in the
flux Jacobian are

aij =
∂ fi
∂ uj

The matrix A can be diagonalized

Λ = X−1AX

where Λ is a diagonal matrix containing the eigenvalues of A, and X is the matrix of right
eigenvectors. Equation (C.2) then can be written as

∂ X−1~u

∂ t
+
∂

Λ︷ ︸︸ ︷
X−1AX X−1~u

∂ x
= 0

With ~w = X−1~u, we have
∂ ~w
∂ t + Λ∂ ~w

∂ x = 0 (C.3)

Equation (C.3) can be decoupled into m scalar equations of the form

∂ wi
∂ t

+ λi
∂ wi
∂ x

= 0
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The elements of ~w are known as characteristic variables. Each characteristics variables
satisfies the linear “wave” convection equation with the speed given by the corresponding
eigenvalue of A.

Now let us split the matrix of eigenvalues Λ into two components such that

Λ = Λ+ + Λ− where Λ± =
Λ± |Λ|

2

With these definitions, Λ+ contains the positive eigenvalues and Λ− contains the negative
eigenvalues. Now equation (C.3) can be rewritten as

∂ ~w

∂ t
+ Λ

∂ ~w

∂ x
=
∂ ~w

∂ t
+ Λ+∂ ~w

∂ x
+ Λ−

∂ ~w

∂ x
= 0

We can then use backward differencing for the term Λ+ ∂ ~w
∂ x

and forward differencing for

the term Λ− ∂ ~w
∂ x

. Pre-multiplying by X, the matrix of right eigenvector of A(AxR = λRx),
and inserting the product X−1X in the spatial terms, we have

∂ X ~w

∂ t
+
∂ XΛ+X−1X ~w

∂ x
+
∂ XΛ−X−1X ~w

∂ x
= 0

Define
A± = XΛ±X−1

and recall that ~u = X ~w, we obtain

∂ ~u

∂ t
+
∂ A+~u

∂ x
+
∂ A−~u

∂ x
= 0

The split flux vectors are defined as

~f± = A±~u
~f = ~f+ + ~f−

0 =
∂ ~u

∂ t
+
∂ ~f+

∂ x
+
∂ ~f−

∂ x

where ~f = A~u for the Euler equations.

Thus, by applying backward differences to the ~f+ term and forward differences to the ~f−

term, we are in effect solving the characteristic equations in the desired manner. This
approach is known as flux-vector splitting.

For the linear Euler equations (or the acoustic field equations), we then have

∂ ~q

∂ t
+ A+ ∂ ~q

∂ x
+ A−

∂ ~q

∂ x
+B+ ∂ ~q

∂ y
+B−

∂ ~q

∂ y
+ C+p

~q

z
+ C−

∂ ~q

∂ z
= ~S

where

~q =


ρ′

u′

v′

w′

p′


We need to apply backward differences to the terms with A+, B+ and C+ and forward
differences to the terms with A−, B− and C−.
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